ज्यामिति MCQ Quiz in हिन्दी - Objective Question with Answer for Geometry - मुफ्त [PDF] डाउनलोड करें

Last updated on May 29, 2025

पाईये ज्यामिति उत्तर और विस्तृत समाधान के साथ MCQ प्रश्न। इन्हें मुफ्त में डाउनलोड करें ज्यामिति MCQ क्विज़ Pdf और अपनी आगामी परीक्षाओं जैसे बैंकिंग, SSC, रेलवे, UPSC, State PSC की तैयारी करें।

Latest Geometry MCQ Objective Questions

ज्यामिति Question 1:

त्रिभुज ABC में, AB = 12 सेमी, BC = 16 सेमी और AC = 20 सेमी है। त्रिभुज के अंदर एक वृत्त अंकित है। वृत्त की त्रिज्या (सेमी में) क्या है?

  1. 3
  2. 4
  3. 5
  4. 6

Answer (Detailed Solution Below)

Option 2 : 4

Geometry Question 1 Detailed Solution

दिया गया है:

त्रिभुज ABC में, AB = 12 सेमी, BC = 16 सेमी, AC = 20 सेमी

प्रयुक्त सूत्र:

त्रिभुज का क्षेत्रफल (Δ) =

जहाँ s = अर्ध-परिमाप =

अंकित वृत्त की त्रिज्या (r) =

गणनाएँ:

a = 12 सेमी, b = 16 सेमी, c = 20 सेमी

s = = 24 सेमी

क्षेत्रफल (Δ) =

⇒ क्षेत्रफल (Δ) =

⇒ क्षेत्रफल (Δ) =

⇒ क्षेत्रफल (Δ) = 96 सेमी2

त्रिज्या (r) =

⇒ त्रिज्या (r) = 4 सेमी

∴ सही उत्तर विकल्प (2) है।

ज्यामिति Question 2:

तीन वृत्त एक दूसरे को बाहरी रूप से स्पर्श करते हैं जब उनके केंद्रों के बीच की दूरी 4 सेमी और 5 सेमी और 6 सेमी होती है। तीनों वृत्त की कुल त्रिज्या ज्ञात कीजिए।

  1. 8
  2. 7.5
  3. 7
  4. 8.5

Answer (Detailed Solution Below)

Option 2 : 7.5

Geometry Question 2 Detailed Solution

दिया गया है: 

तीन वृत्त एक दूसरे को बाहरी रूप से स्पर्श करते हैं जब उनके केंद्रों के बीच की दूरी 4 सेमी होती है 

और 5 सेमी और 6 सेमी।

गणना:

O, P, Q तीन वृत्त के केंद्र हैं और वे M, N और S बिंदुओं पर एक-दूसरे को स्पर्श करते हैं।

OP = 4 सेमी, PQ = 5 सेमी, QO = 6 सेमी

माना OM = OS = r

⇒ MP = PN = 4 – r

⇒ SQ = NQ = QO – OS = 6 – r

⇒ NQ + PN = PQ = 5

⇒ 6 – r + 4 – r = 5

⇒ 2r = 5

⇒ r = 5/2

⇒ OM = 5/2

⇒ MP = 4 – 5/2 = 3/2

⇒ NQ = 6 – 5/2 = 7/2

⇒ OM + MP + NQ = 15/2 = 7.5

∴ तीनों वृत्त की कुल त्रिज्या 7.5 सेमी है।

ज्यामिति Question 3:

दो वृत्त एक दूसरे को बाह्य रूप से स्पर्श करते हैं; उनके केंद्रों के बीच की दूरी 12 सेमी है और उनके क्षेत्रफलों का योगफल (सेमी2 में) 74π है। तब छोटे वृत्त की त्रिज्या कितनी है?

  1. 2.8
  2. 4.5
  3. 5
  4. 3
  5. उपर्युक्त में से कोई नहीं

Answer (Detailed Solution Below)

Option 3 : 5

Geometry Question 3 Detailed Solution

दिया गया है:

उनके क्षेत्रफलों का योगफल =  74 π वर्ग सेमी

उनके केंद्रों के बीच की दूरी = 12 सेमी 

प्रयुक्त सूत्र:

वृत्त का क्षेत्रफल = πr2

गणना:

माना कि वृत्त 1 की त्रिज्या = x

इसलिए, वृत्त 2 की त्रिज्या = 12 - x

वृत्त 1 का क्षेत्रफल = π(x)2

वृत्त 2 का क्षेत्रफल = π(12 - x)2

प्रश्नानुसार ⇒ π(x)2 + π(12 - x)2 = 74π

⇒ x2 + 144 - 24x + x2 = 74 

⇒ 2x2 - 24x + 70 = 0

⇒ x2 - 12x + 35 = 0

⇒ (x - 7)(x - 5) = 0

⇒ x = 7 ⇒ x = 5 

∴ छोटे वृत्त की त्रिज्या 5 सेमी है। 

ज्यामिति Question 4:

(3, 5), (-2, 0) और (6, 4) शीर्षों वाले त्रिभुज का क्षेत्रफल कितना होगा?

  1. 20 वर्ग इकाई
  2. 7 वर्ग इकाई
  3. 10 वर्ग इकाई
  4. 12

Answer (Detailed Solution Below)

Option 3 : 10 वर्ग इकाई

Geometry Question 4 Detailed Solution

दिया गया है:

शीर्ष (3, 5), (- 2, 0) और (6, 4) हैं

प्रयुक्त सूत्र:

त्रिभुज का क्षेत्रफल = 1/2[x1(y2 – y3) + x2(y3 – y1) + x3(y1 – y2)]

गणना:

त्रिभुज का क्षेत्रफल = 1/2|3(0 – 4) - 2(4 – 5) + 6(5 – 0)|

⇒ 1/2|- 12 + 2 + 30|

⇒ 1/2 × 20

⇒ 10  

त्रिभुज का क्षेत्रफल = 10 इकाई2

त्रिभुज का क्षेत्रफल 10 इकाईहै।

ज्यामिति Question 5:

ΔABC में, ∠C = 90° एवं CD ⊥ AB, साथ ही ∠A = 65°, तो ∠CBA का मान कितना होगा:

  1. 25°
  2. 35°
  3. 65°
  4. 40°
  5. उपर्युक्त में से कोई नहीं

Answer (Detailed Solution Below)

Option 1 : 25°

Geometry Question 5 Detailed Solution

दिया गया है:

∠C = 90° 

CD ⊥ AB

∠A = 65°

प्रयुक्त अवधारणा:

त्रिभुज के सभी कोणों का योग 180° है

गणना:

ΔABC में,

∠BAC + ∠CBA  + ∠ACB = 180°

⇒ 65° + 90° + ∠CBA  = 180°

⇒ ∠CBA  = 25°

Important Points

हम लम्बरूप के आधार पर भी हल ज्ञात कर सकते हैं। लेकिन यह अधिक समय लेता है चूँकि ∠A और ∠C दिए गए हैं, उन्हें उन्हें सीधा अवधारणा में लागू कर और हल प्राप्त करना उचित है।

Top Geometry MCQ Objective Questions

उस त्रिभुज का क्षेत्रफल कितना है, जिसके शीर्ष निर्देशांक (1, 2), (-4, -3) और (4, 1) द्वारा दर्शाए गए हैं?

  1. 7 वर्ग इकाई
  2. 20 वर्ग इकाई
  3. 10 वर्ग इकाई
  4. 14 वर्ग इकाई

Answer (Detailed Solution Below)

Option 3 : 10 वर्ग इकाई

Geometry Question 6 Detailed Solution

Download Solution PDF

दिया है:-

त्रिभुज के शीर्ष = (1,2), (-4,-3), (4,1)

प्रयुक्त सूत्र:

त्रिभुज का क्षेत्रफल = ½ [x(y- y3) + x(y- y1) + x(y- y2)]

जिनके शीर्ष (x1, y1), (x2, y2) और (x3, y3हैं

गणना :

⇒ त्रिभुज का क्षेत्रफल = (1/2) × [1(-3 – 1) + (-4) (1 – 2) + 4{2 – (-3)}]

= (1/2) × {(-4) + 4 + 20}

= 20/2

= 10 वर्ग इकाई

त्रिभुज ABC में, AB = 12 सेमी और AC = 10 सेमी, और ∠BAC = 60° है। भुजा BC की लंबाई का मान क्या है?

  1. 10 सेमी
  2. 7.13 सेमी
  3. 13.20 सेमी
  4. 11.13 सेमी

Answer (Detailed Solution Below)

Option 4 : 11.13 सेमी

Geometry Question 7 Detailed Solution

Download Solution PDF

दिया गया है:

त्रिभुज ABC में, AB = 12 सेमी और AC = 10 सेमी और ∠BAC = 60° है।

प्रयुक्त अवधारणा:

कोसाइन के नियम के अनुसार, यदि a, b, और c त्रिभुज ΔABC की तीन भुजाएँ हैं और ∠C AC और AB के बीच का कोण है, तो a2 = b2 + c2 - 2bc × cos∠A

 

गणना:

अवधारणा के अनुसार,

BC2 = AB2 + AC2 - 2 × AB × AC × cos60°

⇒ BC2 = 122 + 102 - 2 × 12 × 10 × 1/2

⇒ BC2 = 124

⇒ BC ≈ 11.13

∴ BC की माप 11.13 सेमी है।

एक वृत्त चतुर्भुज PQRS की सभी भुजाओं को स्पर्श करता है। यदि PQ = 11 सेमी, QR = 12 सेमी और PS = 8 सेमी है। तो RS की लंबाई क्या है?

  1. 7 सेमी
  2. 15 सेमी
  3. 9 सेमी
  4. 7.3 सेमी

Answer (Detailed Solution Below)

Option 3 : 9 सेमी

Geometry Question 8 Detailed Solution

Download Solution PDF

दिया गया है:

एक वृत्त चतुर्भुज PQRS की सभी भुजाओं को स्पर्श करता है। यदि PQ = 11 सेमी, QR = 12 सेमी और PS = 8 सेमी है।

गणना:

यदि एक वृत्त चतुर्भुज PQRS की चारों भुजाओं को स्पर्श करता है, तो, 

PQ + RS = SP + RQ

इसलिए,

⇒ 11 + RS = 8 + 12

⇒ RS = 20 - 11

⇒ RS = 9

∴ विकल्प 3 सही उत्तर है।

AB और CD, 13 सेमी त्रिज्या वाले एक वृत्त की दो समांतर जीवाएँ इस प्रकार हैं कि AB = 10 सेमी और CD = 24 सेमी है। उनके बीच की दूरी ज्ञात कीजिए।(दोनों जीवा एक ही तरफ हैं)

  1. 9 सेमी
  2. 11 सेमी
  3. 7 सेमी
  4. इनमें से कोई नहीं

Answer (Detailed Solution Below)

Option 3 : 7 सेमी

Geometry Question 9 Detailed Solution

Download Solution PDF

दिया गया है

AB ∥ CD, और 

AB = 10 सेमी, CD = 24 सेमी

त्रिज्याएँ OA और OC = 13 सेमी

प्रयुक्त सूत्र

केंद्र से जीवा पर लंब, जीवा को समद्विभाजित करता है।

पाइथागोरस प्रमेय

गणना

AB और CD पर लंबवत OP खींचिए, तथा

AB ∥ CD, इसलिए, बिंदु O, Q, P संरेख हैं।

हम जानते हैं कि वृत्त के केंद्र से जीवा पर डाला गया लम्ब जीवा को समद्विभाजित करता है।

AP = 1/2 AB = 1/2 × 10 = 5 सेमी

CQ = 1/2 CD = 1/2 × 24 = 12 सेमी

OA और OC को मिलाइए 

तब, OA = OC = 13 सेमी

समकोण ΔOPA से, हमें प्राप्त है

OP2 = OA2 -  AP2      [पाइथागोरस प्रमेय]

⇒ OP2 = 132- 52

⇒ OP2 = 169 - 25 = 144

⇒ OP = 12 सेमी

समकोण ΔOQC से, हमें प्राप्त है

OQ2 = OC2- CQ2      [पाइथागोरस प्रमेय]

⇒ OQ2 = 13- 122

⇒ OQ2 = 169 - 144 = 25

⇒ OQ = 5 

इसलिए, PQ = OP - OQ = 12 -5 = 7 सेमी

∴ जीवाओं के बीच की दूरी 7 सेमी है।

एक साधारण अष्टभुज के प्रत्येक आंतरिक कोण और एक साधारण द्वादशभुज के प्रत्येक आंतरिक कोण के माप का अनुपात क्या है?

  1. 8 : 12
  2. 9 : 10
  3. 12 : 8
  4. 4 : 5

Answer (Detailed Solution Below)

Option 2 : 9 : 10

Geometry Question 10 Detailed Solution

Download Solution PDF

संकल्पना:

अष्टभुज में आठ भुजाएं होती हैं

द्वादशभुज में बारह भुजाएं होती हैं

सूत्र:

बहुभुज का आंतरिक कोण = [(n – 2) × 180°] /n

गणना:

अष्टभुज का आंतरिक कोण = [(8 – 2)/8] × 180° = 1080°/8 = 135°

द्वादशभुज का आंतरिक कोण = [(12 – 2)/12] × 180° = 1800°/12 = 150°

अष्टभुज और द्वादशभुज के लिए आंतरिक कोण के माप का अनुपात 9 : 10 है।

किसी वृत्त पर स्पर्शरेखाओं का एक युग्म खींचने के लिए, जो एक दूसरे से 75° के कोण पर झुकी हों, वृत्त की उन दो त्रिज्याओं के अंतिम बिंदुओं पर स्पर्शरेखाएँ खींचना आवश्यक है, जिनके बीच का कोण है-

  1. 65°
  2. 75°
  3. 95°
  4. 105°

Answer (Detailed Solution Below)

Option 4 : 105°

Geometry Question 11 Detailed Solution

Download Solution PDF

अवधारणा:

त्रिज्या संपर्क बिंदु पर स्पर्शरेखा के लंबवत होती है।

चतुर्भुज के सभी कोणों का योग = 360°

गणना:

PA और PB बाहरी बिंदु P से वृत्त पर खींची गई स्पर्श रेखाएँ हैं।

OAP = ∠OBP = 90° (त्रिज्या संपर्क के बिंदु पर स्पर्श रेखा के लंबवत होती है)

अब, चतुर्भुज OAPB में,

∠APB + ∠OAP + ∠AOB + ∠OBP = 360° 

75° + 90° + ∠AOB + 90° = 360°

∠AOB = 105°

इस प्रकार, दो त्रिज्याओं, OA और OB के बीच का कोण 105° है।

दो वृत्त एक-दूसरे को बाह्य रूप से P पर स्पर्श करते हैं। AB दोनों वृत्तों की सीधी उभयनिष्ठ स्पर्श रेखा है, A और B स्पर्श बिंदु हैं, और ∠PAB = 40° है। ∠ABP की माप कितनी है?

  1. 45°
  2. 55°
  3. 50°
  4. 40°

Answer (Detailed Solution Below)

Option 3 : 50°

Geometry Question 12 Detailed Solution

Download Solution PDF

दिया गया है:

दो वृत्त एक दूसरे को बाह्य रूप से P पर स्पर्श करते हैं।

AB दो वृत्तों की सीधी उभयनिष्ठ स्पर्श रेखा है, A और B स्पर्श बिंदु हैं, और ∠PAB = 40° है।

प्रयुक्त अवधारणा:

यदि दो वृत्त किसी बिंदु पर एक-दूसरे को बाह्य रूप से स्पर्श करते हैं और दोनों वृत्तों पर एक सीधी उभयनिष्ठ स्पर्शरेखा खींची जाती है, तो सीधी उभयनिष्ठ स्पर्शरेखा द्वारा उस बिंदु पर अंतरित कोण जहाँ दो वृत्त एक-दूसरे को स्पर्श करते हैं, 90° का होता है।

गणना:

अवधारणा के अनुसार, ∠APB = 90°

ΔAPB को ध्यान में रखते हुए,

∠ABP

⇒ 90° - ∠PAB

⇒ 90° - 40° = 50°

∴ ∠ABP का माप 50° है।

दो उभयनिष्ठ स्पर्श रेखाएं AC और BD, 7 सेमी त्रिज्या वाले दो बराबर वृत्तों को क्रमशः बिन्दुओं A, C, B और D पर स्पर्श करती हैं, जैसा कि आकृति में दर्शाया गया है। यदि BD की लंबाई 48 सेमी है, तो AC की लंबाई कितनी है?

  1. 50 सेमी
  2. 40 सेमी
  3. 48 सेमी
  4. 30 सेमी

Answer (Detailed Solution Below)

Option 1 : 50 सेमी

Geometry Question 13 Detailed Solution

Download Solution PDF

दिया गया है:

प्रत्येक वृत्त की त्रिज्या = 7 सेमी

BD = दो वृत्तों के बीच अनुप्रस्थ उभयनिष्ठ स्पर्श रेखा = 48 सेमी

प्रयुक्त अवधारणा:

सीधी अनुप्रस्थ स्पर्शरेखाओं की लंबाई = (वृत्तों के बीच की दूरी का वर्ग - वृत्तों की त्रिज्या के योग का वर्ग)

सीधी उभयनिष्ठ स्पर्श रेखाओं की लंबाई =√(वृत्तों के बीच की दूरी का वर्ग - वृत्तों की त्रिज्या के बीच के अंतर का वर्ग)

गणना:

AC = सीधी उभयनिष्ठ स्पर्श रेखाओं की लंबाई

BD = सीधी अनुप्रस्थ स्पर्श रेखाओं की लंबाई

माना, दो वृत्तों के बीच की दूरी = x सेमी है,

इसलिए, BD = √[x2 - (7 + 7)2]

⇒ 48 = √(x2 - 142)

⇒ 482 = x2  - 196 [दोनों पक्षों का वर्ग करते हैं]

⇒ 2304 = x2 - 196

⇒ x2 = 2304 + 196 = 2500

⇒ x = √2500 = 50 सेमी

साथ ही, AC = √[502 - (7 - 7)2]

⇒ AC = √(2500 - 0) = √2500 = 50 सेमी

∴ BD की लंबाई 48 सेमी है, AC की लंबाई 50 सेमी है

ABC एक समकोण त्रिभुज है। इसमें एक वृत्त समाहित है। समकोण वाली दो भुजाओं की लंबाई 10 सेमी और 24 सेमी है। वृत्त की त्रिज्या ज्ञात कीजिए।

  1. 3 सेमी
  2. 5 सेमी
  3. 2 सेमी
  4. 4 सेमी

Answer (Detailed Solution Below)

Option 4 : 4 सेमी

Geometry Question 14 Detailed Solution

Download Solution PDF

दिया है:

ABC एक समकोण त्रिभुज है। इसमें एक वृत्त समाहित है।

समकोण वाली दो भुजाओं की लंबाई 10 सेमी और 24 सेमी है

गणना:

कर्ण² = 10² + 24²    (पाइथागोरस प्रमेय)

कर्ण = √676 = 26

एक त्रिभुज के अंदर वाले वृत्त की त्रिज्या (अन्तःवृत्त) = (समकोण वाली भुजाओं का योग – कर्ण)/2

⇒ (10 + 24 - 26)/2

⇒ 8/2

⇒ 4

∴ सही विकल्प विकल्प 4 है।

130° के संपूरक कोण का पूरक कोण कौन सा है?

  1. 50° 
  2. 30° 
  3. 40° 
  4. 70° 

Answer (Detailed Solution Below)

Option 3 : 40° 

Geometry Question 15 Detailed Solution

Download Solution PDF

दिया गया है:

संपूरक कोणों में से एक 130° है।

प्रयुक्त अवधारणा:

संपूरक कोण के लिए: दो कोणों का योग 180° होता है।

पूरक कोण के लिए: दो कोणों का योग 90° होता है।

गणना:

130° का संपूरक कोण = 180° - 130° = 50°

50° का पूरक कोण = 90° - 50° = 40°

∴ 130° के संपूरक कोण का पूरक कोण 40° है।Mistake Points
कृपया ध्यान दीजिए कि पहले हमें 130° का संपूरक कोण ज्ञात करना है और उसके बाद हम परिणामी मान का पूरक कोण ज्ञात करेंगे।

Hot Links: teen patti classic teen patti royal - 3 patti teen patti game - 3patti poker teen patti jodi