The system of linear equations 

-y + z = 0

(4d - 1) x + y + Z = 0

(4d - 1) z = 0 

has a non-trivial solution, if d equals 

This question was previously asked in
BPSC Assistant Professor Mechanical 2022 Official Paper
View all BPSC Assistant Professor Papers >
  1. 1/2
  2. 1/4
  3. 3/4

Answer (Detailed Solution Below)

Option 2 : 1/4

Detailed Solution

Download Solution PDF

Concept:

 

For a homogeneous system of linear equations:

Having non-trivial solution:

The rank of the matrix should be less than the number of variables.

Or determinant of the matrix should be equal to zero.

Calculation:

Given:

-y + z = 0

(4d - 1) x + y + Z = 0

(4d - 1) z = 0

So, A = 

For non-trivial solution:

det. A = 0

⇒ 

⇒ 0 × [(4d - 1) - 0] + 1 × [(4d - 1)2 - 0] + 1(0 - 0) = 0

⇒ (4d - 1)2 = 0

⇒ d = 

∴ The system of linear equations has a non-trivial solution if d equals to 

Latest BPSC Assistant Professor Updates

Last updated on Jun 20, 2025

-> The Interview for BPSC Assistant Professor (Advt. No. 04/2025 to 28/2025) will be conducted in September 2025.

-> The BPSC Assistant Professor Notification 2025 was released for 1711 vacancies under Speciality (Advt. No.04/2025 to 28/2025).

-> The recruitment is ongoing for 220 vacancies (Advt. No. 01/2024 to 17/2024).

-> The salary under BPSC Assistant Professor Recruitment is approximately Rs 15600-39100 as per Pay Matrix Level 11. 

-> The selection is based on the evaluation of academic qualifications &  work experience and interview.

-> Prepare for the exam using the BPSC Assistant Professor Previous Year Papers. For mock tests attempt the BPSC Assistant Professor Test Series.

More System of Linear Equations Questions

More Linear Algebra Questions

Hot Links: lucky teen patti teen patti glory teen patti rich teen patti gold apk