\(\rm \displaystyle\int_0^{16} \frac{x^{\frac{1}{4}}}{{1+ \sqrt{x}}}dx\) का मान क्या है?

This question was previously asked in
KVS PGT Mathematics 2018 Official Paper
View all KVS Papers >
  1. \(\frac{4}{3}+\tan^{-1}2\)
  2. \(\frac{8}{3}+4\tan^{-1}2\)
  3. \(4\left[\frac{1}{3}+\tan^{-1}2\right]\)
  4. \(\frac{4}{3}[2+\tan^{-1}2]\)

Answer (Detailed Solution Below)

Option 2 : \(\frac{8}{3}+4\tan^{-1}2\)
Free
KVS PRT: English(Vocabulary) Quiz
2 K Users
5 Questions 5 Marks 5 Mins

Detailed Solution

Download Solution PDF

गणना:

माना, \(I=\rm \displaystyle\int_0^{16} \frac{x^{\frac{1}{4}}}{{1+ \sqrt{x}}}dx\)

t = \(\rm x^\frac{1}{4}\) ⇒ x = t4 ⇒ dx = 4t3dt प्रतिस्थापित करने पर,

जब, x = 0 ⇒ t = 0

और x = 16 ⇒ t = 2

\(I=\rm \displaystyle \int_{0}^2\frac{t}{1+t^2}\times 4t^3dt\)

\(\rm \displaystyle 4\int_{0}^2\frac{t^4}{1+t^2}dt\)

\(\rm \displaystyle 4\int_{0}^2\left( \frac{1}{1+t^2}+t^2-1\right )dt\)

\(\rm 4\left[tan^{-1}t+\frac{t^3}{3}-t\right]_{0}^{2}\)

\(\rm 4(\left[tan^{-1}(2)+\frac{2^3}{3}-2\right]-0)\)

\(\rm 4\left[ tan^{-1}(2)+\frac{2}{3}\right ]\)

\(=\frac{8}{3}+4\tan^{-1}2\)

∴ \(\rm \displaystyle\int_0^{16} \frac{x^{\frac{1}{4}}}{{1+ \sqrt{x}}}dx\)  \(=\frac{8}{3}+4\tan^{-1}2\)

Latest KVS Updates

Last updated on Dec 11, 2024

The Kendriya Vidyalaya Sangathan (KVS) will soon release the notification for the KVS Recruitment 2025 for the posts of TGT, PGT, PRT, Librarian, Stenographer etc. A total of 13000+ vacancies are released for recruitment. The eligibility and salary are different for different posts. Candidates must refer to the KVS Previous Year Papers to understand the trend of questions for the exam.

More Definite Integrals Questions

Get Free Access Now
Hot Links: teen patti lucky teen patti master update teen patti joy 51 bonus teen patti 500 bonus teen patti gold real cash