Suppose x(t) is the solution of the following initial value problem in ℝ2

xΜ‡ = Ax, x(0) = x0, where A = \(\left[\begin{array}{ll}5 & 4 \\1 & 2\end{array}\right]\).

Which of the following statements is true?

This question was previously asked in
CSIR UGC (NET) Mathematical Science: Held On (7 June 2023)
View all CSIR NET Papers >
  1. x(t) is a bounded solution for some x0 ≠ 0.
  2. e−6t|x(t)| → 0 as t → ∞, for all x0 ≠ 0.
  3. e−t|x(t)| → ∞ as t → ∞, for all x0 ≠ 0.
  4. e−10t|x(t)| → 0 as t → ∞, for all x0 ≠ 0.

Answer (Detailed Solution Below)

Option 4 : e−10t|x(t)| → 0 as t → ∞, for all x0 ≠ 0.
Free
Seating Arrangement
3.3 K Users
10 Questions 20 Marks 15 Mins

Detailed Solution

Download Solution PDF

Concept: 

Solution of ODE x'(t) = Ax is x(t) = c1ueλ1t + c2veλ2t, where u, v are the eigenvectors corresponding to the eigenvalues λ1 and λ2 respectively and c1 and c2 are constants.

Explanation:

A = \(\left[\begin{array}{ll}5 & 4 \\1 & 2\end{array}\right]\)

tr(A) = 5 + 2 = 7 and det(A) = 10 - 4 = 6

Eigenvalues are given by

λ2 - tr(A)λ + det(A) = 0

λ2 - 7λ + 6 = 0

(λ - 1)(λ - 6) = 0

λ = 1, 6

Eigenvector corresponding to eigenvalue λ = 1 is given by

\(\left[\begin{array}{ll}4 & 4 \\1 & 1\end{array}\right]\)\(\left[\begin{array}{ll}u_1 \\u_2\end{array}\right]\) = 0  

u1 + u2 = 0 ⇒ u1 = - u2 

Eigenvector is u = \(\begin{bmatrix}-1 \\1\end{bmatrix}\)

Eigenvector corresponding to eigenvalue λ = 6 is given by

\(\begin{bmatrix}-1 & 4 \\1 & -4\end{bmatrix}\)\(\left[\begin{array}{ll}v_1 \\v_2\end{array}\right]\) = 0  

v1 - 4v2 = 0 ⇒ v1 = 4v2 

Eigenvector is v = \(\left[\begin{array}{ll}4 \\1\end{array}\right]\)

Hence solution is

x(t) = c1\(\begin{bmatrix}-1 \\1\end{bmatrix}\)et + c2\(\left[\begin{array}{ll}4 \\1\end{array}\right]\)e6t

x(t) = \(\begin{bmatrix}-c_1e^t+4c_2e^{6t} \\c_1e^t+c_2e^{6t}\end{bmatrix}\)

et → ∞ as t → ∞ also e6t → ∞ as t → ∞

So x(t) is not bounded solution for any x0 ≠ 0

(1) is false

e−6t|x(t)| = \(\begin{bmatrix}-c_1e^{-5t}+4c_2 \\c_1e^{-5t}+c_2\end{bmatrix}\) → \(\begin{bmatrix}4c_2 \\c_2\end{bmatrix}\) does not tends to 0

So (2) is false

e−t|x(t)| = \(\begin{bmatrix}-c_1+4c_2e^{5t} \\c_1+c_2e^{5t}\end{bmatrix}\)

Let x(0) = \(\begin{bmatrix}1 \\-1\end{bmatrix}\) then

-c1 + 4c2 = 1 and c1 + c2 = -1

Solving them we get c1 = -1, c2 = 0

Hence x(t) = \(\begin{bmatrix}-1 \\1\end{bmatrix}\) does not tends to ∞ as t → ∞   

(3) is false

e−10t|x(t)| \(\begin{bmatrix}-c_1e^{-9t}+4c_2e^{-4t} \\c_1e^{-9t}+c_2e^{-4t}\end{bmatrix}\) → 0 as t → ∞, for all x0 ≠ 0.

Option (4) is correct

Latest CSIR NET Updates

Last updated on Jun 5, 2025

-> The NTA has released the CSIR NET 2025 Notification for the June session.

-> The CSIR NET Application Form 2025 can be submitted online by 23rd June 2025

-> The CSIR UGC NET is conducted in five subjects -Chemical Sciences, Earth Sciences, Life Sciences, Mathematical Sciences, and Physical Sciences. 

-> Postgraduates in the relevant streams can apply for this exam.

-> Candidates must download and practice questions from the CSIR NET Previous year papers. Attempting the CSIR NET mock tests are also very helpful in preparation.

More Ordinary Differential Equations Questions

Get Free Access Now
Hot Links: teen patti noble teen patti 50 bonus teen patti rich teen patti bindaas