The discrete Fourier series representation for the following sequence:

\(x\left( n \right) = \cos \frac{\pi }{4}n\) is

This question was previously asked in
ESE Electrical 2019 Official Paper
View all UPSC IES Papers >
  1. \(\frac{1}{2}{e^{j{{\rm{\Omega }}_0}n}} + \frac{1}{2}{e^{ - j{{\rm{\Omega }}_0}n}}\) and \({{\rm{\Omega }}_0} = \frac{\pi }{8}\)
  2. \(\frac{1}{2}{e^{ - j{{\rm{\Omega }}_0}n}} + \frac{1}{2}{e^{ - j2{{\rm{\Omega }}_0}n}}\) and \({{\rm{\Omega }}_0} = \frac{\pi }{4}\)
  3. \(\frac{1}{2}{e^{ - j{{\rm{\Omega }}_0}n}} + \frac{1}{2}{e^{ - j{{\rm{\Omega }}_0}n}}\) and \({{\rm{\Omega }}_0} = \frac{\pi }{6}\)
  4. \(\frac{1}{2}{e^{j{{\rm{\Omega }}_0}n}} + \frac{1}{2}{e^{j7{{\rm{\Omega }}_0}n}}\) and \({{\rm{\Omega }}_0} = \frac{\pi }{4}\)

Answer (Detailed Solution Below)

Option 4 : \(\frac{1}{2}{e^{j{{\rm{\Omega }}_0}n}} + \frac{1}{2}{e^{j7{{\rm{\Omega }}_0}n}}\) and \({{\rm{\Omega }}_0} = \frac{\pi }{4}\)
Free
ST 1: UPSC ESE (IES) Civil - Building Materials
6.2 K Users
20 Questions 40 Marks 24 Mins

Detailed Solution

Download Solution PDF

Concept:

The Fourier series representation of the discrete-time periodic sequence is given by:

\(x\left( n \right) = \mathop \sum \limits_{k = 0}^{N - 1} {a_k}{e^{jk{\omega _0}n}}\)

\(x\left( n \right) = \ldots + {a_{ - 1}}{e^{ - j{\omega _0}n}} + {a_1}{e^{j{\omega _0}n}} + \ldots \)

ak = Fourier series coefficient periodic by N.

ω0 = Fundamental frequency.

Application:

Given sequence is: \(x\left( n \right) = \cos \frac{\pi }{4}n\)

The fundamental frequency of the sequence \({\omega _0} = \frac{\pi }{4}\)

We know that, \(\cos \theta = \frac{{{e^{j\theta }} + {e^{ - j\theta }}}}{2}\)

Now, we can rewrite the given sequence as

\(x\left( n \right) = \frac{{{e^{\frac{{j\pi }}{4}n}} + {e^{ - \frac{{j\pi }}{4}n}}}}{2}\)

\( = \frac{1}{2}{e^{\frac{{j\pi }}{4}n}} + \frac{1}{2}{e^{\frac{{ - j\pi }}{4}n}}\)

We can write \({e^{\frac{{ - j\pi }}{4}n}} = {e^{\frac{{j7\pi }}{4}n}}\)

Now, x(n) becomes

\(x\left( n \right) = \frac{1}{2}{e^{\frac{{j\pi }}{4}n}} + \frac{1}{2}{e^{\frac{{j7\pi }}{4}n}}\)

\( = \frac{1}{2}{e^{j{{\rm{\Omega }}_0}n}} + \frac{1}{2}{e^{j7{{\rm{\Omega }}_0}n}}\) and \({{\rm{\Omega }}_0} = \frac{\pi }{4}\)
Latest UPSC IES Updates

Last updated on May 28, 2025

->  UPSC ESE admit card 2025 for the prelims exam has been released. 

-> The UPSC IES Prelims 2025 will be held on 8th June 2025.

-> The selection process includes a Prelims and a Mains Examination, followed by a Personality Test/Interview.

-> Candidates should attempt the UPSC IES mock tests to increase their efficiency. The UPSC IES previous year papers can be downloaded here.

More Discrete Fourier Transform (DFT) and Discrete Fourier Series (DFS) Questions

Get Free Access Now
Hot Links: teen patti master old version teen patti pro teen patti glory teen patti king teen patti app