Perpendicular Lines MCQ Quiz in বাংলা - Objective Question with Answer for Perpendicular Lines - বিনামূল্যে ডাউনলোড করুন [PDF]

Last updated on Mar 15, 2025

পাওয়া Perpendicular Lines उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). এই বিনামূল্যে ডাউনলোড করুন Perpendicular Lines MCQ কুইজ পিডিএফ এবং আপনার আসন্ন পরীক্ষার জন্য প্রস্তুত করুন যেমন ব্যাঙ্কিং, এসএসসি, রেলওয়ে, ইউপিএসসি, রাজ্য পিএসসি।

Latest Perpendicular Lines MCQ Objective Questions

Top Perpendicular Lines MCQ Objective Questions

Perpendicular Lines Question 1:

The co-ordinate of the foot of the perpendicular from P(1, 8, 4) on the line joining R(0, -1, 3) and Q(2, -3, -1) is

  1. \(\left(\frac{-5}{3}, \frac{-2}{3}, \frac{-19}{3}\right)\)
  2. \(\left(\frac{5}{3}, \frac{2}{3}, \frac{-19}{3}\right)\)
  3. \(\left(\frac{-5}{3}, \frac{2}{3}, \frac{19}{3}\right)\)
  4. \(\left(\frac{5}{3}, \frac{2}{3}, \frac{19}{3}\right)\)

Answer (Detailed Solution Below)

Option 3 : \(\left(\frac{-5}{3}, \frac{2}{3}, \frac{19}{3}\right)\)

Perpendicular Lines Question 1 Detailed Solution

Calculation

Direction ratios of line RQ:

(2-0, -3-(-1), -1-3) = (2, -2, -4) = (1, -1, -2)

Equation of line RQ in parametric form:

\(x = 0 + \lambda(1) = \lambda\)

\(y = -1 + \lambda(-1) = -1 - \lambda\)

\(z = 3 + \lambda(-2) = 3 - 2\lambda\)

Let the foot of the perpendicular from P on line RQ be F(\(\lambda\), -1-\(\lambda\), 3-2\(\lambda\)).

Direction ratios of PF:

(\(\lambda\)-1, -1-\(\lambda\)-8, 3-2\(\lambda\)-4) = (\(\lambda\)-1, -9-\(\lambda\), -1-2\(\lambda\))

Since PF is perpendicular to RQ, the dot product of their direction ratios is zero:

⇒ 1(\(\lambda\)-1) - 1(-9-\(\lambda\)) - 2(-1-2\(\lambda\)) = 0

⇒ \(\lambda\) - 1 + 9 + \(\lambda\) + 2 + 4\(\lambda\) = 0

⇒ 6\(\lambda\) + 10 = 0

⇒ 6\(\lambda\) = -10

⇒ \(\lambda\) = -10/6 = -5/3

Coordinates of F:

\(x = \lambda = -5/3\)

\(y = -1 - \lambda = -1 - (-5/3) = -1 + 5/3 = 2/3\)

\(z = 3 - 2\lambda = 3 - 2(-5/3) = 3 + 10/3 = 19/3\)

∴ The coordinates of the foot of the perpendicular are (-5/3, 2/3, 19/3).

Hence option 3 is correct

Perpendicular Lines Question 2:

Invariant points of the transformation \(\rm w=\frac{2Z-4}{Z+2}\) are

  1. 2 and -2
  2. √2 i and -√2 i
  3. 2i and -2i
  4. i and -i

Answer (Detailed Solution Below)

Option 3 : 2i and -2i

Perpendicular Lines Question 2 Detailed Solution

Concept:

Then invariant point of a transformation w = T(z) is given by z = T(z).

Explanation:

The invariant points of \(\rm w=\frac{2Z-4}{Z+2}\) is given by

\(\rm Z=\frac{2Z-4}{Z+2}\)

⇒ Z2 + 2Z = 2Z - 4

⇒ Z2 = -4

⇒ Z = ± 2i

(3) is true.

Perpendicular Lines Question 3:

The foot of the perpendicular drawn from the origin, on the line, \(3x + y = \lambda (\lambda \neq 0)\) is \(P\). If the line meets x-axis at \(A\) and y-axis at \(B\), then the ratio \(BP : PA\) is

  1. \(9 : 1\)
  2. \(1 : 3\)
  3. \(1 : 9\)
  4. \(3 : 1\)

Answer (Detailed Solution Below)

Option 1 : \(9 : 1\)

Perpendicular Lines Question 3 Detailed Solution

Let (x,y) be foot of perpendicular drawn to the point \((x_1,y_1)\) on the line \(ax+by+c=0\)

Relation :\(\dfrac{x-x_{1}}{a}=\dfrac{y-y_{1}}{b}=\dfrac{-\left ( ax_{1}+by_{1}+cz_{1} \right )}{a^{2}+b^{2}}\)

Here \((x_1,y_1)\)=(0,0)

given line is: \(3x+y-\lambda=0\)

\(\dfrac{x-0}{3}=\dfrac{y-0}{1}=\dfrac{-\left ( \left ( 3\times 0 \right )+\left ( 1\times 0 \right )-\lambda \right )}{3^{2}+1^{2}}\)

\(x=\dfrac{3\lambda }{10}\) and \(y=\dfrac{\lambda }{10}\)

Hence foot of perpendicular \(P=\left ( \dfrac{3\lambda }{10},\dfrac{\lambda }{10} \right )\)

Line meets X-axis at \(A=\left ( \dfrac{\lambda }{3},0 \right )\)

and meets Y-axis at \(B=\left ( 0,\lambda \right )\)

\(BP=\sqrt{\left ( \dfrac{3\lambda }{10} \right )^{2}+\left ( \dfrac{\lambda }{10}-\lambda \right )^{2}}\)

\(\Rightarrow BP=\sqrt{\dfrac{9\lambda ^{2}}{100}+\dfrac{81\lambda ^{2}}{100}}\)

\(\therefore BP=\sqrt{\dfrac{90\lambda ^{2}}{100}}\)

\(AP=\sqrt{\left ( \dfrac{\lambda }{3}-\dfrac{3\lambda }{10} \right )^{2}+\left ( 0-\dfrac{\lambda }{10} \right )^{2}}\)

\(\Rightarrow AP=\sqrt{\dfrac{\lambda ^{2}}{900}+\dfrac{\lambda ^{2}}{100}}\)

\(\therefore AP=\sqrt{\dfrac{10\lambda ^{2}}{900}}\)

\(\therefore BP:AP=9:1\)

Hence, correct option is 'A'.

Perpendicular Lines Question 4:

Suppose that the points \((h, k), (1, 2)\) and \((-3, 4)\) lie on the line \(L_1\). If a line \(L_2\) passing through the points \((h, k)\) and \((4, 3)\) is perpendicular to \(L_1\), then \(\dfrac{k}{h}\) equals:

  1. \(3\)
  2. \(-\dfrac{1}{7}\)
  3. \(\dfrac{1}{3}\)
  4. \(0\)

Answer (Detailed Solution Below)

Option 3 : \(\dfrac{1}{3}\)

Perpendicular Lines Question 4 Detailed Solution

Equation of \(L_1\) is
\( y = - \dfrac{1}{2} x + \dfrac{5}{2}\) ....(1)
Equation of \(L_2\) is
\(y = 2x - 5\) ...(2)
By (1) and (2)
\(x = 3\)
\(y = 1 \Rightarrow h = 3, k= 1\)
\(\dfrac{k}{h} = \dfrac{1}{3}\)


qImage671b41c36a35786d4a146b73

Perpendicular Lines Question 5:

The length of the perpendicular from the point \( (2,-1,4) \) on the straight line \( \dfrac{x+3}{10}=\dfrac{y-2}{-7}=\dfrac{z}{1} \) is:

  1. less than \( 2 \)
  2. greater than \( 3 \) but less than \( 4 \)
  3. greater than \( 4 \)
  4. greater than \( 2 \) but less than \( 3 \)

Answer (Detailed Solution Below)

Option 2 : greater than \( 3 \) but less than \( 4 \)

Perpendicular Lines Question 5 Detailed Solution

\( \left(2,\dfrac{-3}{2},\dfrac{1}{2}\right) \)

Now, \( \overset{\rightarrow }{MP}.(10\hat{i}-7\hat{j}+\hat{k})=0 \)

\( \Rightarrow \lambda=\dfrac{1}{2} \)

\( \therefore \) Length of perpendicular

\( (=PM)=\sqrt{0+\dfrac{1}{4}+\dfrac{49}{4}} \)

\( =\sqrt{\dfrac{50}{4}}=\sqrt{\dfrac{25}{2}}=\sqrt{\dfrac{5}{\sqrt{2}}} \), which is greater than \( 3 \) but \( less than 4 \)


qImage671b41a7a7de5622defe90e1

Perpendicular Lines Question 6:

If the straight line, \(2 x - 3 y + 17 = 0\) is perpendicular to the line passing through the points \(( 7,17 )\) and \(( 15 , \beta )\), then \(\beta\) equals :-

  1. \(-5\)
  2. \(- \dfrac { 35 } { 3 }\)
  3. \(\dfrac { 35 } { 3 }\)
  4. \(5\)

Answer (Detailed Solution Below)

Option 4 : \(5\)

Perpendicular Lines Question 6 Detailed Solution

Slope of given line is \(\dfrac{2}{3}\)

Lines are perpendicular so

\(\dfrac{17 - \beta}{-8} \times \dfrac{2}{3} = -1\)

\(\beta = 5\)

Perpendicular Lines Question 7:

Let Q and R be the feet of perpendiculars from the point P(a, a, a) on the lines x = y, z = 1 and x = –y, z = –1 respectively. If ∠QPR is a right angle, then 12a2 is equal to _____

Answer (Detailed Solution Below) 12

Perpendicular Lines Question 7 Detailed Solution

Calculation

Given 

x = y, z = 1 ⇒ L\(\frac{x}{1} = \frac{y}{1} = \frac{z - 1}{0} = λ\)

⇒ Q = (λ, λ, 1)

⇒ \(\vec {PQ} = (λ-a) \hat i +(λ-a) \hat j + (1-a)\hat k\)

\(\vec {PQ} \perp L_1\) ⇒  \(((λ-a) \hat i +(λ-a) \hat j + (1-a)\hat k)\cdot(\hat i+\hat j +0\hat k)\) = 0

x = –y, z = –1 ⇒ L2 : \(\frac{x}{1} =\frac{y}{-1}=\frac{z+1}{0}=k\)

⇒ R = (k, -k, -1)

⇒ \(\vec {PR} = (k-a) \hat i +(-k-a) \hat j + (-1-a)\hat k\)

\(\vec {PR} \perp L_2\) ⇒ \(((k-a) \hat i +(-k-a) \hat j + (-1-a)\hat k)\cdot(\hat i-\hat j +0\hat k)\) = 0

⇒ k - a + k + a  = 0 ⇒ k = 0

∠QPR is a right angle ⇒ \(\vec {PQ} \perp \vec {PR}\)

\( ((λ-a) \hat i +(λ-a) \hat j + (1-a)\hat k)\cdot((k-a) \hat i +(-k-a) \hat j + (-1-a)\hat k) = 0\)

⇒ \( ((λ-a)(k-a)+(λ-a)(-k-a)+ (1-a)(-1-a) = 0\)

⇒ (1-a)(1+a) = 0 ⇒ a= 1

12a= 12

Perpendicular Lines Question 8:

If the angle between two lines whose d.rs are 1, 2, p − 1 and -3, 1, 2 is 90°, then p is

  1. 3/2
  2. -3/2
  3. 2
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : 3/2

Perpendicular Lines Question 8 Detailed Solution

Concept:

Let two lines having direction ratio’s a1, b1, c1 and a2, b2, c2 respectively.

Condition for perpendicular lines: a1a2 + b1b2 + c1c2 = 0

Calculation:

Direction ratio’s of two lines are given as 1, 2, p − 1 and -3, 1, 2

Lines are perpendicular,

∴ 1 × -3 + 2 × 1 + (p – 1) × 2 = 0

⇒ -3 + 2 + 2p – 2 = 0

⇒ 2p = 3

∴ p = 3/2

Perpendicular Lines Question 9:

Find the values of k so the line \(\frac{{{\rm{x}} + 4}}{{2{\rm{}}}} = \frac{{4 - {\rm{y}}}}{-2} = \frac{{{\rm{2z}} - 4}}{{\rm 2k}}\) and \(\frac{{{\rm{x}} +3}}{\rm -k} = \frac{{\rm{y-3}}}{{\rm{2}}} = \frac{{{\rm{z}} + 1}}{5}\) are at right angles.

  1.  4/3
  2.  -4/3
  3.  -2/3
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 2 :  -4/3

Perpendicular Lines Question 9 Detailed Solution

Concept:

Let the two lines have direction ratio’s a1, b1, c1 and a2, b2, c2 respectively.

Condition for perpendicular lines: a1a2 + b1b2 + c1c2 = 0

Calculation:

Given lines are  \(\frac{{{\rm{x}} + 4}}{{2{\rm{}}}} = \frac{{4 - {\rm{y}}}}{-2} = \frac{{{\rm{2z}} - 4}}{{\rm 2k}}\) and \(\frac{{{\rm{x}} +3}}{\rm -k} = \frac{{\rm{y-3}}}{{\rm{2}}} = \frac{{{\rm{z}} + 1}}{5}\) 

Write the above equation of a line in the standard form of lines

\( \Rightarrow \frac{{{\rm{x}} + 4}}{{2{\rm{}}}} = \frac{-{(\rm y - {\rm{4})}}}{-2} = \frac{2{{(\rm{z}} - 2)}}{{\rm 2k}} \Leftrightarrow \frac{{\left( {{\rm{x}} +4 } \right)}}{{\rm{2}}} = \frac{{{\rm{y}} - 4}}{{ 2}} = \frac{{{\rm{z}} - 2}}{{ \rm k}}\)

So, the direction ratio of the first line is (2, 2, k)

\(\frac{{{\rm{x}} +3}}{\rm -k} = \frac{{\rm{y-3}}}{{\rm{2}}} = \frac{{{\rm{z}} + 1}}{5}\)

So, direction ratio of second line is (-k, 2, 5)

Lines are perpendicular,

∴ (2 × -k) + (2 × 2) + (k × 5) = 0

⇒ -2k + 4 + 5k = 0

⇒ 3k + 4 = 0

∴ k = -4/3

Perpendicular Lines Question 10:

The straight line \(\frac{{x - 1}}{1} = \frac{{y - 3}}{0} = \frac{{z - 2}}{5}\) is

  1. Intersecting at 30° 
  2. parallel to y-axis
  3. perpendicular to x-axis
  4. perpendicular to y-axis
  5. None of the above/More than one of the above.

Answer (Detailed Solution Below)

Option 4 : perpendicular to y-axis

Perpendicular Lines Question 10 Detailed Solution

Concept:

1. Equation of a line: The equation of a line with direction ratio (a, b, c) that passes through the point (x1, y1, z1) is given by the formula: 

\(\rm \frac{{x - x_1}}{a} = \frac{{y - y_1}}{b} = \frac{{z - z_1}}{c}\)

2. Let two lines having direction ratio’s a1, b1, c1 and a2, b2, c2 respectively.

Condition for perpendicular lines: a1a2 + b1b2 + c1c2 = 0

Note: Direction ratio’s of x-axis, y-axis and z-axis are (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively.

Calculation:

Given line is  \(\frac{{x - 1}}{1} = \frac{{y - 3}}{0} = \frac{{z - 2}}{5}\)

So, Direction ratio’s of the line is (1, 0, 5)

As we know that direction ratio’s of the y-axis is (0, 1, 0)

Now, apply the condition of perpendicular lines,

⇒ 1 × 0 + 0 × 1 + 5 × 0 = 0

Hence, y−axis and given line are perpendicular to each other.

Get Free Access Now
Hot Links: teen patti gold online master teen patti teen patti vungo