Perpendicular Lines MCQ Quiz in বাংলা - Objective Question with Answer for Perpendicular Lines - বিনামূল্যে ডাউনলোড করুন [PDF]
Last updated on Mar 15, 2025
Latest Perpendicular Lines MCQ Objective Questions
Top Perpendicular Lines MCQ Objective Questions
Perpendicular Lines Question 1:
The co-ordinate of the foot of the perpendicular from P(1, 8, 4) on the line joining R(0, -1, 3) and Q(2, -3, -1) is
Answer (Detailed Solution Below)
Perpendicular Lines Question 1 Detailed Solution
Calculation
Direction ratios of line RQ:
(2-0, -3-(-1), -1-3) = (2, -2, -4) = (1, -1, -2)
Equation of line RQ in parametric form:
\(x = 0 + \lambda(1) = \lambda\)
\(y = -1 + \lambda(-1) = -1 - \lambda\)
\(z = 3 + \lambda(-2) = 3 - 2\lambda\)
Let the foot of the perpendicular from P on line RQ be F(\(\lambda\), -1-\(\lambda\), 3-2\(\lambda\)).
Direction ratios of PF:
(\(\lambda\)-1, -1-\(\lambda\)-8, 3-2\(\lambda\)-4) = (\(\lambda\)-1, -9-\(\lambda\), -1-2\(\lambda\))
Since PF is perpendicular to RQ, the dot product of their direction ratios is zero:
⇒ 1(\(\lambda\)-1) - 1(-9-\(\lambda\)) - 2(-1-2\(\lambda\)) = 0
⇒ \(\lambda\) - 1 + 9 + \(\lambda\) + 2 + 4\(\lambda\) = 0
⇒ 6\(\lambda\) + 10 = 0
⇒ 6\(\lambda\) = -10
⇒ \(\lambda\) = -10/6 = -5/3
Coordinates of F:
\(x = \lambda = -5/3\)
\(y = -1 - \lambda = -1 - (-5/3) = -1 + 5/3 = 2/3\)
\(z = 3 - 2\lambda = 3 - 2(-5/3) = 3 + 10/3 = 19/3\)
∴ The coordinates of the foot of the perpendicular are (-5/3, 2/3, 19/3).
Hence option 3 is correct
Perpendicular Lines Question 2:
Invariant points of the transformation \(\rm w=\frac{2Z-4}{Z+2}\) are
Answer (Detailed Solution Below)
Perpendicular Lines Question 2 Detailed Solution
Concept:
Then invariant point of a transformation w = T(z) is given by z = T(z).
Explanation:
The invariant points of \(\rm w=\frac{2Z-4}{Z+2}\) is given by
\(\rm Z=\frac{2Z-4}{Z+2}\)
⇒ Z2 + 2Z = 2Z - 4
⇒ Z2 = -4
⇒ Z = ± 2i
(3) is true.
Perpendicular Lines Question 3:
The foot of the perpendicular drawn from the origin, on the line, \(3x + y = \lambda (\lambda \neq 0)\) is \(P\). If the line meets x-axis at \(A\) and y-axis at \(B\), then the ratio \(BP : PA\) is
Answer (Detailed Solution Below)
Perpendicular Lines Question 3 Detailed Solution
Relation :\(\dfrac{x-x_{1}}{a}=\dfrac{y-y_{1}}{b}=\dfrac{-\left ( ax_{1}+by_{1}+cz_{1} \right )}{a^{2}+b^{2}}\)
Here \((x_1,y_1)\)=(0,0)
given line is: \(3x+y-\lambda=0\)\(\dfrac{x-0}{3}=\dfrac{y-0}{1}=\dfrac{-\left ( \left ( 3\times 0 \right )+\left ( 1\times 0 \right )-\lambda \right )}{3^{2}+1^{2}}\)
\(x=\dfrac{3\lambda }{10}\) and \(y=\dfrac{\lambda }{10}\)
Hence foot of perpendicular \(P=\left ( \dfrac{3\lambda }{10},\dfrac{\lambda }{10} \right )\)
Line meets X-axis at \(A=\left ( \dfrac{\lambda }{3},0 \right )\)
and meets Y-axis at \(B=\left ( 0,\lambda \right )\)\(BP=\sqrt{\left ( \dfrac{3\lambda }{10} \right )^{2}+\left ( \dfrac{\lambda }{10}-\lambda \right )^{2}}\)
\(\Rightarrow BP=\sqrt{\dfrac{9\lambda ^{2}}{100}+\dfrac{81\lambda ^{2}}{100}}\)
\(\therefore BP=\sqrt{\dfrac{90\lambda ^{2}}{100}}\)
\(AP=\sqrt{\left ( \dfrac{\lambda }{3}-\dfrac{3\lambda }{10} \right )^{2}+\left ( 0-\dfrac{\lambda }{10} \right )^{2}}\)
\(\Rightarrow AP=\sqrt{\dfrac{\lambda ^{2}}{900}+\dfrac{\lambda ^{2}}{100}}\)
\(\therefore AP=\sqrt{\dfrac{10\lambda ^{2}}{900}}\)
\(\therefore BP:AP=9:1\)
Hence, correct option is 'A'.
Perpendicular Lines Question 4:
Suppose that the points \((h, k), (1, 2)\) and \((-3, 4)\) lie on the line \(L_1\). If a line \(L_2\) passing through the points \((h, k)\) and \((4, 3)\) is perpendicular to \(L_1\), then \(\dfrac{k}{h}\) equals:
Answer (Detailed Solution Below)
Perpendicular Lines Question 4 Detailed Solution
Equation of \(L_1\) is
\( y = - \dfrac{1}{2} x + \dfrac{5}{2}\) ....(1)
Equation of \(L_2\) is
\(y = 2x - 5\) ...(2)
By (1) and (2)
\(x = 3\)
\(y = 1 \Rightarrow h = 3, k= 1\)
\(\dfrac{k}{h} = \dfrac{1}{3}\)
Perpendicular Lines Question 5:
The length of the perpendicular from the point \( (2,-1,4) \) on the straight line \( \dfrac{x+3}{10}=\dfrac{y-2}{-7}=\dfrac{z}{1} \) is:
Answer (Detailed Solution Below)
Perpendicular Lines Question 5 Detailed Solution
\( \left(2,\dfrac{-3}{2},\dfrac{1}{2}\right) \)
Now, \( \overset{\rightarrow }{MP}.(10\hat{i}-7\hat{j}+\hat{k})=0 \)
\( \Rightarrow \lambda=\dfrac{1}{2} \)
\( \therefore \) Length of perpendicular
\( (=PM)=\sqrt{0+\dfrac{1}{4}+\dfrac{49}{4}} \)
\( =\sqrt{\dfrac{50}{4}}=\sqrt{\dfrac{25}{2}}=\sqrt{\dfrac{5}{\sqrt{2}}} \), which is greater than \( 3 \) but \( less than 4 \)
Perpendicular Lines Question 6:
If the straight line, \(2 x - 3 y + 17 = 0\) is perpendicular to the line passing through the points \(( 7,17 )\) and \(( 15 , \beta )\), then \(\beta\) equals :-
Answer (Detailed Solution Below)
Perpendicular Lines Question 6 Detailed Solution
Slope of given line is \(\dfrac{2}{3}\)
Lines are perpendicular so
\(\dfrac{17 - \beta}{-8} \times \dfrac{2}{3} = -1\)
\(\beta = 5\)
Perpendicular Lines Question 7:
Let Q and R be the feet of perpendiculars from the point P(a, a, a) on the lines x = y, z = 1 and x = –y, z = –1 respectively. If ∠QPR is a right angle, then 12a2 is equal to _____
Answer (Detailed Solution Below) 12
Perpendicular Lines Question 7 Detailed Solution
Calculation
Given
x = y, z = 1 ⇒ L1 : \(\frac{x}{1} = \frac{y}{1} = \frac{z - 1}{0} = λ\)
⇒ Q = (λ, λ, 1)
⇒ \(\vec {PQ} = (λ-a) \hat i +(λ-a) \hat j + (1-a)\hat k\)
\(\vec {PQ} \perp L_1\) ⇒ \(((λ-a) \hat i +(λ-a) \hat j + (1-a)\hat k)\cdot(\hat i+\hat j +0\hat k)\) = 0
x = –y, z = –1 ⇒ L2 : \(\frac{x}{1} =\frac{y}{-1}=\frac{z+1}{0}=k\)
⇒ R = (k, -k, -1)
⇒ \(\vec {PR} = (k-a) \hat i +(-k-a) \hat j + (-1-a)\hat k\)
\(\vec {PR} \perp L_2\) ⇒ \(((k-a) \hat i +(-k-a) \hat j + (-1-a)\hat k)\cdot(\hat i-\hat j +0\hat k)\) = 0
⇒ k - a + k + a = 0 ⇒ k = 0
∠QPR is a right angle ⇒ \(\vec {PQ} \perp \vec {PR}\)
⇒ \( ((λ-a) \hat i +(λ-a) \hat j + (1-a)\hat k)\cdot((k-a) \hat i +(-k-a) \hat j + (-1-a)\hat k) = 0\)
⇒ \( ((λ-a)(k-a)+(λ-a)(-k-a)+ (1-a)(-1-a) = 0\)
⇒ (1-a)(1+a) = 0 ⇒ a2 = 1
⇒12a2 = 12
Perpendicular Lines Question 8:
If the angle between two lines whose d.rs are 1, 2, p − 1 and -3, 1, 2 is 90°, then p is
Answer (Detailed Solution Below)
Perpendicular Lines Question 8 Detailed Solution
Concept:
Let two lines having direction ratio’s a1, b1, c1 and a2, b2, c2 respectively.
Condition for perpendicular lines: a1a2 + b1b2 + c1c2 = 0
Calculation:
Direction ratio’s of two lines are given as 1, 2, p − 1 and -3, 1, 2
Lines are perpendicular,
∴ 1 × -3 + 2 × 1 + (p – 1) × 2 = 0
⇒ -3 + 2 + 2p – 2 = 0
⇒ 2p = 3
∴ p = 3/2
Perpendicular Lines Question 9:
Find the values of k so the line \(\frac{{{\rm{x}} + 4}}{{2{\rm{}}}} = \frac{{4 - {\rm{y}}}}{-2} = \frac{{{\rm{2z}} - 4}}{{\rm 2k}}\) and \(\frac{{{\rm{x}} +3}}{\rm -k} = \frac{{\rm{y-3}}}{{\rm{2}}} = \frac{{{\rm{z}} + 1}}{5}\) are at right angles.
Answer (Detailed Solution Below)
Perpendicular Lines Question 9 Detailed Solution
Concept:
Let the two lines have direction ratio’s a1, b1, c1 and a2, b2, c2 respectively.
Condition for perpendicular lines: a1a2 + b1b2 + c1c2 = 0
Calculation:
Given lines are \(\frac{{{\rm{x}} + 4}}{{2{\rm{}}}} = \frac{{4 - {\rm{y}}}}{-2} = \frac{{{\rm{2z}} - 4}}{{\rm 2k}}\) and \(\frac{{{\rm{x}} +3}}{\rm -k} = \frac{{\rm{y-3}}}{{\rm{2}}} = \frac{{{\rm{z}} + 1}}{5}\)
Write the above equation of a line in the standard form of lines
\( \Rightarrow \frac{{{\rm{x}} + 4}}{{2{\rm{}}}} = \frac{-{(\rm y - {\rm{4})}}}{-2} = \frac{2{{(\rm{z}} - 2)}}{{\rm 2k}} \Leftrightarrow \frac{{\left( {{\rm{x}} +4 } \right)}}{{\rm{2}}} = \frac{{{\rm{y}} - 4}}{{ 2}} = \frac{{{\rm{z}} - 2}}{{ \rm k}}\)
So, the direction ratio of the first line is (2, 2, k)
\(\frac{{{\rm{x}} +3}}{\rm -k} = \frac{{\rm{y-3}}}{{\rm{2}}} = \frac{{{\rm{z}} + 1}}{5}\)
So, direction ratio of second line is (-k, 2, 5)
Lines are perpendicular,
∴ (2 × -k) + (2 × 2) + (k × 5) = 0
⇒ -2k + 4 + 5k = 0
⇒ 3k + 4 = 0
∴ k = -4/3
Perpendicular Lines Question 10:
The straight line \(\frac{{x - 1}}{1} = \frac{{y - 3}}{0} = \frac{{z - 2}}{5}\) is
Answer (Detailed Solution Below)
Perpendicular Lines Question 10 Detailed Solution
Concept:
1. Equation of a line: The equation of a line with direction ratio (a, b, c) that passes through the point (x1, y1, z1) is given by the formula:
\(\rm \frac{{x - x_1}}{a} = \frac{{y - y_1}}{b} = \frac{{z - z_1}}{c}\)
2. Let two lines having direction ratio’s a1, b1, c1 and a2, b2, c2 respectively.
Condition for perpendicular lines: a1a2 + b1b2 + c1c2 = 0
Note: Direction ratio’s of x-axis, y-axis and z-axis are (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively.
Calculation:
Given line is \(\frac{{x - 1}}{1} = \frac{{y - 3}}{0} = \frac{{z - 2}}{5}\)
So, Direction ratio’s of the line is (1, 0, 5)
As we know that direction ratio’s of the y-axis is (0, 1, 0)
Now, apply the condition of perpendicular lines,
⇒ 1 × 0 + 0 × 1 + 5 × 0 = 0
Hence, y−axis and given line are perpendicular to each other.