Algebra MCQ Quiz - Objective Question with Answer for Algebra - Download Free PDF
Last updated on May 13, 2025
Latest Algebra MCQ Objective Questions
Algebra Question 1:
What is the value of a3 + b3 + c3 if (a + b + c) = 0?
Answer (Detailed Solution Below)
Algebra Question 1 Detailed Solution
Given Data:
a + b + c = 0
Formula Used:
a3+ b3 + c3 – 3abc = (a+b+c)( a2+ b2+c2 −ab−bc–ca)
Calculation:
According to the formula,
a3+ b3 + c3 – 3abc = (a + b + c)( a2 + b2 + c2 − ab − bc – ca)
But (a+b+c) = 0
⇒ a3+ b3 + c3 – 3abc = 0
⇒ a3+ b3 + c3 = 3abc
∴ a3 + b3 + c3 is 3abc.
Algebra Question 2:
If 2x + 3y = 16 and xy = 9, then find 8x3 + 27y3
Answer (Detailed Solution Below)
Algebra Question 2 Detailed Solution
Given:-
2x + 3y = 16 and xy = 9
Concept used:-
(a + b)3 = a3 + b3 + 3ab(a + b)
Calculation:-
a3 + b3 = (a + b)3 - 3ab(a + b)
8x3 + 27y3
⇒ (2x)3 + (3y)3
⇒ (2x + 3y)3 - 3 × 2x × 3y (2x + 3y)
⇒ (2x + 3y)3 - 18xy (2x + 3y)
⇒ 163 - 18 × 9 × 16
⇒ 4096 - 2592
⇒ 1504
∴ The required answer is 1504.
Algebra Question 3:
If X + Y = 23 and XY = 126; what is the value of (X)² + (Y)² = ?
Answer (Detailed Solution Below)
Algebra Question 3 Detailed Solution
Given:
X + Y = 23
XY = 126
Formula used:
(X + Y)2 = X2 + Y2 + 2XY
Calculation:
232 = X2 + Y2 + 2 × 126
⇒ 529 = X2 + Y2 + 252
⇒ X2 + Y2 = 529 - 252
⇒ X2 + Y2 = 277
∴ The correct answer is option (2).
Algebra Question 4:
Simplify.
\(\frac{(232)^3+(140)^3+(353)^3-3\times232\times140\times353}{(232)^2+(140)^2+(353)^2-232\times140-140\times353-353\times232}\)
Answer (Detailed Solution Below)
Algebra Question 4 Detailed Solution
Given:
\(\frac{(232)^3+(140)^3+(353)^3-3\times232\times140\times353}{(232)^2+(140)^2+(353)^2-232\times140-140\times353-353\times232}\)
Formula used:
a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
Calculation:
\(\frac{(232)^3+(140)^3+(353)^3-3\times232\times140\times353}{(232)^2+(140)^2+(353)^2-232\times140-140\times353-353\times232}\)
Using the formula:
a = 232, b = 140, c = 353
Numerator: (232)3 + (140)3 + (353)3 - 3×232×140×353
Denominator: (232)2 + (140)2 + (353)2 - 232×140 - 140×353 - 353×232
Using the formula, we get:
Numerator: (232 + 140 + 353)( (232)2 + (140)2 + (353)2 - 232×140 - 140×353 - 353×232)
⇒ (232 + 140 + 353) = 725
∴ The correct answer is option (2).
Algebra Question 5:
Simplify:
\(\frac{(7.3)^3 - (4.7)^3}{(7.3)^2 + 7.3 \times 4.7 + (4.7)^2}\)
Answer (Detailed Solution Below)
Algebra Question 5 Detailed Solution
Given:
We are asked to simplify the expression:
\( \frac{(7.3)^3 - (4.7)^3}{(7.3)^2 + 7.3 \times 4.7 + (4.7)^2} \)
Formula used:
\( a^3 - b^3 = (a - b)(a^2 + ab + b^2) \)
Calculations:
Multiply the numerator and denominator by (7.3 - 4.7)
The expression will become:
\( \frac{(7.3)^3 - (4.7)^3}{(7.3)^2 + 7.3 \times 4.7 + (4.7)^2} \) × \(\frac{(7.3 - 4.7)}{(7.3 - 4.7)}\)
The denominator will become, \({(7.3)^3 - (4.7)^3}\)
Hence,
\( \frac{(7.3)^3 - (4.7)^3}{(7.3)^3 - (4.7)^3} \) × (7.3 - 4.7)
⇒(7.3 - 4.7)
⇒2.6
Option 3 is the correct answer.
Top Algebra MCQ Objective Questions
If \(\rm x-\frac{1}{x}=-6\), what will be the value of \(\rm x^5-\frac{1}{x^5}\)?
Answer (Detailed Solution Below)
Algebra Question 6 Detailed Solution
Download Solution PDFGiven:
x - (1/x) = (- 6)
Formula used:
If x - (1/x) = P, then
x + (1/x) = √(P2 + 4)
If x + (1/x) = P, then
x3 + (1/x3) = (P3 - 3P)
x5 - (1/x5) = {x3 + (1/x3)} × {x2 - 1/x2} + {x - (1/x)}
Calculation:
x - (1/x) = (- 6)
x + (1/x) = √{(- 6)2 + 4} = √40 = 2√10
So, x2 - 1/x2 = (x + 1/x) (x - 1/x) = 2√10 × (-6) = -12√10
and x3 + (1/x3) = (√40)3 - 3√40
⇒ 40√40 - 3√40 = 37 × 2√10 = 74√10
Now,
x5 - (1/x5) = {x3 + (1/x3)} × {x2 - 1/x2} + {x - (1/x)}
⇒ {74√10 × (-12√10)} + (- 6)
⇒ - 74 × 12 × (√10 × √10) - 6
⇒ (- 8880) - 6 = - 8886
∴ The correct answer is - 8886.
If \(a + \frac{1}{a} = 7\), then \(a^5 + \frac{1}{a^5} \)is equal to:
Answer (Detailed Solution Below)
Algebra Question 7 Detailed Solution
Download Solution PDFGiven:
\(a + \frac{1}{a} = 7\)
Formula used:
(a + 1/a) = P ; then
(a2 + 1/a2) = P2 - 2
(a3 + 1/a3) = P3 - 3P
\(a^5 + \frac{1}{a^5} \) = (a2 + 1/a2) × (a3 + 1/a3) - (a + 1/a)
Calculation:
a + (1/a) = 7
⇒ (a2 + 1/a2) = (7)2 - 2 = 49 - 2 = 47
⇒ (a3 + 1/a3) = (7)3 - (3 × 7) = 343 - 21 = 322
a5 + (1/a5) = (a2 + 1/a2) × (a3 + 1/a3) - (a + 1/a)
⇒ 47 × 322 - 7
⇒ 15134 - 7 = 15127
∴ The correct answer is 15127.
If (a + b + c) = 19 and (a2 + b2 + c2) = 155, find the value of (a - b)2 + (b - c)2 + (c - a)2.
Answer (Detailed Solution Below)
Algebra Question 8 Detailed Solution
Download Solution PDFGiven:
(a + b + c) = 19
(a2 + b2 + c2) = 155
Formula used:
a2 + b2 + c2 - (ab + bc + ca) = (1/2) × [(a - b)2 + (b - c)2 + (c - a)2]
Calculation:
a + b + c = 19
Squaring both sides
⇒ (a + b + c)2 = (19)2
⇒ a2 + b2 + c2 + 2 × (ab + bc + ca) = 361
⇒ 155 + 2 × (ab + bc + ca) = 361
⇒ 2 × (ab + bc + ca) = (361 - 155)
⇒ (ab + bc + ca) = 206/2 = 103
Now,
a2 + b2 + c2 - (ab + bc + ca) = (1/2) × [(a - b)2 + (b - c)2 + (c - a)2]
⇒ 2 × (155 - 103) = (a - b)2 + (b - c)2 + (c - a)2
⇒ (a - b)2 + (b - c)2 + (c - a)2 = 104
∴ The correct answer is 104.
If \((x^2+\frac{1}{x^2})=7\), and 0 < x < 1, find the value of \(x^2-\frac{1}{x^2} \).
Answer (Detailed Solution Below)
Algebra Question 9 Detailed Solution
Download Solution PDFGiven:
x2 + (1/x2) = 7
Formula used:
x2 + (1/x2) = P
then x + (1/x) = √(P + 2)
and x - (1/x) = √(P - 2)
⇒ x2 - (1/x2) = {x + (1/x)} × {x - (1/x)}
Calculation:
x2 + (1/x2) = 7
⇒ x + (1/x) = √(7 + 2) = √9
⇒ x + (1/x) = 3
⇒ x - (1/x) = -√(7 - 2)
⇒ x - (1/x) = - √5 {0 < x < 1}
x2 - (1/x2) = {x + (1/x)} × {x - (1/x)}
⇒ 3 × (- √5)
∴ The correct answer is - 3√5.
Mistake Points
Please note that
0 < x < 1
so
1/x > 1
so
x + 1/x > 1
and
x - 1/x < 0 (because 0 < x < 1 and 1/x > 1 so x - 1/x < 0)
so
(x - 1/x)(x + 1/x) < 0
If \(7 b-\frac{1}{4 b}=7\), then what is the value of \(16 b^2+\frac{1}{49 b^2}\) ?
Answer (Detailed Solution Below)
Algebra Question 10 Detailed Solution
Download Solution PDFFormula used
(a - b)2 = a2 + b2 - 2ab
Calculation
Multiplying the expression by 4/7.
⇒ 4/7 × (7b - 1/4b) = 7 × 4/7
⇒ 4b - 1/7b = 4
Squaring both sides:
⇒ (4b - 1/7b)2 = 42
⇒ \(16 b^2+\frac{1}{49 b^2}\)- 2 × 4 × 1/7 = 16
⇒ \(16 b^2+\frac{1}{49 b^2}\) = 16 + 8/7
⇒ \(16 b^2+\frac{1}{49 b^2}\) = 120/7
The value is 120/7.
If (a + b + c) = 12, and (a2 + b2 + c2) = 50, find the value of (a3 + b3 + c3 - 3abc)
Answer (Detailed Solution Below)
Algebra Question 11 Detailed Solution
Download Solution PDFGiven :
(a + b + c) = 12, (a2 + b2 + c2) = 50
Formula Used :
(a + b + c)2 = a2 + b2 + c2 + 2(ab + bc +ac)
(a3 + b3 + c3 - 3abc) = (a2 + b2 + c2 - ab - bc - ca)(a + b + c)
Calculation :
⇒ 144 = 50 + 2(ab + bc +ac)
⇒ (ab + bc +ac) = 94/2 = 47
Now,
⇒ (a3 + b3 + c3 - 3abc)
⇒ (a2 + b2 + c2 - ab - bc - ca)(a + b + c) = (50 - 47)(12)
⇒ 3 × 12 = 36
∴ The correct answer is 36.
If \((x - \frac{1}{x})\)= √6, and x > 1, what is the value of \((x^8 - \frac{1}{x^8})\)?
Answer (Detailed Solution Below)
Algebra Question 12 Detailed Solution
Download Solution PDFGiven:
x - (1/x) = √6
Formula used:
x8 - (1/x8) = {x4 + (1/x4)} × {x2 + (1/x2)} × {x + (1/x)} × {x - (1/x)}
If x - (1/x) = a, then x + (1/x) = √(a2 + 4)
Calculation:
x - (1/x) = √6
x2 + (1/x2) = (√6)2 + 2 = 8
Square both sides:
x4 + (1/x4) = (8)2 - 2 = 62
Using, If x - (1/x) = a, then x + (1/x) = √{(√a)2 + 4} .
x + (1/x) = √{(√6)2 + 4} = √10
Substituting the values, we get
x8 - (1/x8) = {x4 + (1/x4)} × {x2 + (1/x2)} × {x + (1/x)} × {x - (1/x)}
⇒ 62 × 8 × √10 × √6 = 496 × 2 × √15 = 992√15
∴ The correct answer is 992√15.
Shortcut Trick
If a - 1/a = m,
• Then a2 +1/a2 = m2 + 2
• Then a4 + 1/a4 = m4 + 4m2 + 2
if a2 +1/a2 = m , then a +1/a = √(m+2)
⇒ x - 1/x =√6
⇒ x2+1/x2 = (√6)2 +2 = 8
⇒ x +1/x = √10
⇒ x4+ 1/x4 = (√6)4+4(√6)2 +2 = 36+24+2 = 62
⇒ x8 - (1/x8) = {x4 + (1/x4)} × {x2 + (1/x2)} × {x + (1/x)} × {x - (1/x)}
⇒ 62 × 8 × √10 × √6 = 496 × 2 × √15
⇒ 992√15
If x2 - 1/x2 = 4 \(\sqrt2\), what is the value of x4 - 1/x4?
Answer (Detailed Solution Below)
Algebra Question 13 Detailed Solution
Download Solution PDFx2 -1/x2 = 4√2
Formula used:-
(A + B)2 = A2 + B2 + 2AB
(A2 - B2) = (A+ B) (A - B)
Calculation:-
Square both side
⇒ (x2 -1/x2)2 = (4√2 )2
⇒ x4 + 1/x4 - 2 = 32
⇒ x4 + 1/x4 = 34
Add 2 on both sides
⇒ x4 + 1/x4 + 2 = 34 +2
⇒ (x2 + 1/x2)2 = 62
⇒ (x2 + 1/x2) = 6 ....(1)
According to the question,
⇒ x4 - 1/x4 = (x2 + 1/x2) (x2 -1/x2)
⇒ (4√2) × 6 = 24√ 2
∴ The required answer is 24√ 2.
A and B have some toffees. If A gives one toffee to B, then they have equal number of toffees. If B gives one toffee to A, then the toffees with A are double with B. The total number of toffees with A and B are __________.
Answer (Detailed Solution Below)
Algebra Question 14 Detailed Solution
Download Solution PDFCalculation
let the number of toffee with A be x and with B be y.
If A gives one toffee to B, then:
⇒ x - 1 = y + 1
⇒ x = y + 2 .........(1)
Now when B gives one toffee to A, then the toffees with A are double with B:
⇒ x + 1 = 2 (y - 1) ......(2)
Putting the value of eq.(1) in eq. (2).
⇒ y + 3 = 2y - 2
⇒ y = 5
If y = 5 then x = 7.
⇒ x + y = 12
The total number of toffees with A and B are 12.
The square of the sum of two given natural numbers is 784, while the product of the two given numbers is 192. Find the positive difference between the squares of these two given numbers.
Answer (Detailed Solution Below)
Algebra Question 15 Detailed Solution
Download Solution PDFLet the numbers are X and Y
Given:
(X + Y)2 = 784 and XY = 192
Calculation:
(X + Y)2 = 784 ⇒ (X + Y) = 28
⇒ X2 + Y2 + 2XY = 784
⇒ X2 + Y2 + 2 × 192 = 784
⇒ X2 + Y2 = 400
So,
⇒ X2 + Y2 - 2XY = 400 - 2 × 192
⇒ X2 + Y2 - 2XY = 16
⇒ (X - Y)2 = 16
⇒ X - Y = 4
Now,
X2 - Y2 = (X + Y)(X - Y)
⇒ 28 × 4 = 112
∴ The correct option is 4
Alternate MethodAccording to the question,
(x + y)2 = 784
⇒ x + y = √784 = 28
xy = 192
x - y = √{(x + y)2 - 4xy}
⇒ √{282 - 4 × 192} = √16 = 4
Now, x2 - y2 = (x + y)(x - y) = 28 × 4 = 112