Inverse of a Matrix MCQ Quiz in मल्याळम - Objective Question with Answer for Inverse of a Matrix - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക
Last updated on Mar 14, 2025
Latest Inverse of a Matrix MCQ Objective Questions
Top Inverse of a Matrix MCQ Objective Questions
Inverse of a Matrix Question 1:
If \(3{\rm{A}} = \left[ {\begin{array}{*{20}{c}} 1&2&2\\ 2&1&{ - 2}\\ { - 2}&2&{ - 1} \end{array}} \right]{\rm{then\;}}{{\rm{A}}^{ - 1}} = \_\_\_\)
Answer (Detailed Solution Below)
Inverse of a Matrix Question 1 Detailed Solution
Let \({\rm{B}} = 3{\rm{A}} = \left[ {\begin{array}{*{20}{c}} 1&2&2\\ 2&1&{ - 2}\\ { - 2}&2&{ - 1} \end{array}} \right]\)
\(\left| {\rm{B}} \right| = \left( {8 - 1 + 8} \right) - \left( { - 4 - 4 - 4} \right) = 15 + 12 = 27\)
\(\begin{array}{l} \left[ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} 1&2 \end{array}}&2&1\\ {\begin{array}{*{20}{c}} { - 2}&{ - 1} \end{array}}&2&{ - 2}\\ {\begin{array}{*{20}{c}} {\begin{array}{*{20}{c}} 2\\ 1 \end{array}}&{\begin{array}{*{20}{c}} { - 2}\\ 2 \end{array}} \end{array}}&{\begin{array}{*{20}{c}} 1\\ 2 \end{array}}&{\begin{array}{*{20}{c}} 2\\ 1 \end{array}} \end{array}} \right]\\ {\rm{Adj}}\left( {\rm{B}} \right) = \left[ {\begin{array}{*{20}{c}} 3&6&{ - 6}\\ 6&3&6\\ 6&{ - 6}&{ - 3} \end{array}} \right]\\ {{\rm{B}}^{ - 1}} = \frac{1}{{27}} \times 3 \times \left[ {\begin{array}{*{20}{c}} 1&2&{ - 2}\\ 2&1&2\\ 2&{ - 2}&{ - 1} \end{array}} \right]\\ {\left( {3{\rm{A}}} \right)^{ - 1}} = \frac{1}{9}\left[ {3{\rm{\;}}{{\rm{A}}^{\rm{T}}}} \right]\\ {{\rm{A}}^{ - 1}}{\rm{\;}} = {\rm{\;}}{{\rm{A}}^{\rm{T}}} \end{array}\)
Inverse of a Matrix Question 2:
If \(A = \frac {1}{3} \left( {\begin{array}{*{20}{c}} 1&{2}&2\\ 2&{1}&{-2}\\ -2&2&{-1} \end{array}} \right)\) then (AAT)-1 = ?
Answer (Detailed Solution Below)
Inverse of a Matrix Question 2 Detailed Solution
Explanation:
Given matrix \(A = \frac {1}{3} \left( {\begin{array}{*{20}{c}} 1&{2}&2\\ 2&{1}&{-2}\\ -2&2&{-1} \end{array}} \right)\)
Now its transpose will be
\(A^T = \frac {1}{3} \left( {\begin{array}{*{20}{c}} 1&{2}&{-2}\\ 2&{1}&{2}\\ 2&{-2}&{-1} \end{array}} \right)\)
The product will be
AAT = \(\frac {1}{3} \left( {\begin{array}{*{20}{c}} 1&{2}&2\\ 2&{1}&{-2}\\ -2&2&{-1} \end{array}} \right) \cdot \frac {1}{3} \left( {\begin{array}{*{20}{c}} 1&{2}&{-2}\\ 2&{1}&{2}\\ 2&{-2}&{-1} \end{array}} \right)\)
Here, AAT = \(\frac {1}{9} \left( {\begin{array}{*{20}{c}} 9&{0}&{0}\\ 0&{9}&{0}\\ 0&{0}&{9} \end{array}} \right)\)
⇒ AAT = I;
∴ (AAT)-1 = (I)-1 = I;Inverse of a Matrix Question 3:
If \(A=\left[\begin{array}{rrr}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & 2 & 1\end{array}\right]\), then A-1 is
Answer (Detailed Solution Below)
Inverse of a Matrix Question 3 Detailed Solution
Concept:
The inverse of square matrix A exists only when |A| ≠ 0
For a square matrix A, A-1 = \(\frac{1}{\begin{vmatrix} A \end{vmatrix}}\)adj(A), where adj(A) is the adjoint of A.
Solution:
Given, \(A=\left[\begin{array}{rrr}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & 2 & 1\end{array}\right]\)
Determinant lAl = \(\left[\begin{array}{rrr}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & 2 & 1\end{array}\right]\)
= 1(3 - 0) - 2(- 1 - 0) - 2(- 2 - 0)
= 9
∴ Inverse of matrix A exists.
In order to find adjoint of A ,lets find minor of matrix of A
MA = \(\begin{bmatrix} \begin{vmatrix} 3 & 0\\ 2 & 1 \end{vmatrix} & \begin{vmatrix} -1 &0 \\ 0& 1 \end{vmatrix} & \begin{vmatrix} -1 & 3\\ 0 & 2 \end{vmatrix}\\ \begin{vmatrix} 2 & -2\\ 2 & 1 \end{vmatrix} & \begin{vmatrix} 1 & -2\\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 1 & 2\\ 0 & 2 \end{vmatrix}\\ \begin{vmatrix} 2 &-2 \\ 3 & 0 \end{vmatrix} & \begin{vmatrix} 1 & -2\\ -1 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 2\\ -1 & 3 \end{vmatrix} \end{bmatrix}\)
= \(\left[\begin{array}{rrr}3 & -1 & -2 \\ 6 & 1 & 2 \\ 6 & -2 & 5\end{array}\right]\)
C0-factors of A is
CA = \(\begin{bmatrix} (-1)^{1+1} (3) & (-1)^{1+2} (-1) &(-1)^{1+3} (-2)\\ (-1)^{1+4}(6) & (-1)^{1+5}(1) & (-1)^{1+6}(2) \\ (-1)^{1+7}(6) & (-1)^{1+8}(-2) & (-1)^{1+9}(5) \end{bmatrix}\)
= \(\left[\begin{array}{rrr}3 & 1 & -2 \\ -6 & 1 & -2 \\ 6 & 2 & 5\end{array}\right]\)
Taking Transpose,
CAT = \(\left[\begin{array}{rrr}3 & -6 & 6 \\ 1 & 1 & 2 \\ -2 & -2 & 5\end{array}\right]\)=adj(A)
As we know that,
A-1 = \(\frac{1}{\begin{vmatrix} A \end{vmatrix}}\)adj(A)
= \(\frac{1}{9}\left[\begin{array}{rrr}3 & -6 & 6 \\ 1 & 1 & 2 \\ -2 & -2 & 5\end{array}\right]\) = \(\left[\begin{array}{rrr}\frac{1}{3} & \frac{-2}{3} & \frac{2}{3} \\ \frac{1}{9} & \frac{1}{9} & \frac{2}{9} \\ \frac{-2}{9} & \frac{-2}{9} & \frac{5}{9}\end{array}\right]\)
∴ The inverse of A is, A-1 = \(\left[\begin{array}{rrr}\frac{1}{3} & \frac{-2}{3} & \frac{2}{3} \\ \frac{1}{9} & \frac{1}{9} & \frac{2}{9} \\ \frac{-2}{9} & \frac{-2}{9} & \frac{5}{9}\end{array}\right]\)
The correct answer is Option 4.
Inverse of a Matrix Question 4:
Inverse of matrix \(\left[ {\begin{array}{*{20}{c}} 0&1&0\\ 0&0&1\\ 1&0&0 \end{array}} \right]\) is
Answer (Detailed Solution Below)
Inverse of a Matrix Question 4 Detailed Solution
Explanation:
\({A^{ - 1}} = \frac{{adj\left( A \right)}}{{\left| A \right|}}\;\)
\(\left| A \right| = \left| {\begin{array}{*{20}{c}} 0&1&0\\ 0&0&1\\ 1&0&0 \end{array}} \right|\)
|A|= 0 (0 - 0) – 1 (0 - 1) + 0 (0 - 0)
∴ |A| = 1
Now,
\(adj\left( A \right) = \left[ {\begin{array}{*{20}{c}} 0&0&1\\ 1&0&0\\ 0&1&0 \end{array}} \right]\)
\(\therefore {A^{ - 1}} = \frac{1}{{\left| A \right|}}adj\left( A \right)\)
Inverse of a Matrix Question 5:
Determinant of a square matrix is always
Answer (Detailed Solution Below)
Inverse of a Matrix Question 5 Detailed Solution
a number
A determinant is a real number associated with every square matrix.
Inverse of a Matrix Question 6:
If \(A=\left[\begin{array}{rrr}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & 2 & 1\end{array}\right]\), then A-1 is
Answer (Detailed Solution Below)
Inverse of a Matrix Question 6 Detailed Solution
Concept:
The inverse of square matrix A exists only when |A| ≠ 0
For a square matrix A, A-1 = \(\frac{1}{\begin{vmatrix} A \end{vmatrix}}\)adj(A), where adj(A) is the adjoint of A.
Solution:
Given, \(A=\left[\begin{array}{rrr}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & 2 & 1\end{array}\right]\)
Determinant lAl = \(\left[\begin{array}{rrr}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & 2 & 1\end{array}\right]\)
= 1(3 - 0) - 2(- 1 - 0) - 2(- 2 - 0)
= 9
∴ Inverse of matrix A exists.
In order to find adjoint of A ,lets find minor of matrix of A
MA = \(\begin{bmatrix} \begin{vmatrix} 3 & 0\\ 2 & 1 \end{vmatrix} & \begin{vmatrix} -1 &0 \\ 0& 1 \end{vmatrix} & \begin{vmatrix} -1 & 3\\ 0 & 2 \end{vmatrix}\\ \begin{vmatrix} 2 & -2\\ 2 & 1 \end{vmatrix} & \begin{vmatrix} 1 & -2\\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 1 & 2\\ 0 & 2 \end{vmatrix}\\ \begin{vmatrix} 2 &-2 \\ 3 & 0 \end{vmatrix} & \begin{vmatrix} 1 & -2\\ -1 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 2\\ -1 & 3 \end{vmatrix} \end{bmatrix}\)
= \(\left[\begin{array}{rrr}3 & -1 & -2 \\ 6 & 1 & 2 \\ 6 & -2 & 5\end{array}\right]\)
C0-factors of A is
CA = \(\begin{bmatrix} (-1)^{1+1} (3) & (-1)^{1+2} (-1) &(-1)^{1+3} (-2)\\ (-1)^{1+4}(6) & (-1)^{1+5}(1) & (-1)^{1+6}(2) \\ (-1)^{1+7}(6) & (-1)^{1+8}(-2) & (-1)^{1+9}(5) \end{bmatrix}\)
= \(\left[\begin{array}{rrr}3 & 1 & -2 \\ -6 & 1 & -2 \\ 6 & 2 & 5\end{array}\right]\)
Taking Transpose,
CAT = \(\left[\begin{array}{rrr}3 & -6 & 6 \\ 1 & 1 & 2 \\ -2 & -2 & 5\end{array}\right]\)=adj(A)
As we know that,
A-1 = \(\frac{1}{\begin{vmatrix} A \end{vmatrix}}\)adj(A)
= \(\frac{1}{9}\left[\begin{array}{rrr}3 & -6 & 6 \\ 1 & 1 & 2 \\ -2 & -2 & 5\end{array}\right]\) = \(\left[\begin{array}{rrr}\frac{1}{3} & \frac{-2}{3} & \frac{2}{3} \\ \frac{1}{9} & \frac{1}{9} & \frac{2}{9} \\ \frac{-2}{9} & \frac{-2}{9} & \frac{5}{9}\end{array}\right]\)
∴ The inverse of A is, A-1 = \(\left[\begin{array}{rrr}\frac{1}{3} & \frac{-2}{3} & \frac{2}{3} \\ \frac{1}{9} & \frac{1}{9} & \frac{2}{9} \\ \frac{-2}{9} & \frac{-2}{9} & \frac{5}{9}\end{array}\right]\)
Inverse of a Matrix Question 7:
If a matrix is given by A = \(\left[ {\begin{array}{*{20}{c}} 1&2&3\\ 0&4&5\\ 0&0&1 \end{array}} \right]\) , then the determinant of A-1 is:
Answer (Detailed Solution Below)
Inverse of a Matrix Question 7 Detailed Solution
Concept:
Determinant of (A-1) = \(\frac{1}{\rm Determinant~of~A}\)
Where, Determinant of A = 1(4 × 1 - 5 × 0) - 2(0 - 0) + 3(0 - 0) = 4
Calculation:
Given:
Determinant of A = 4
So, Determinant of (A-1) = \(\frac{1}{\rm Determinant~of~A}\) = \(\frac{1}{4}\)
Additional Information
A-1 = \(\frac{\rm adj A}{\rm Determinant~of~A}\)
adj.A = Transverse of matrix \(\left[ {\begin{array}{*{20}{c}} {{A_{11}}}&{{A_{12}}}&{{A_{13}}}\\ {{A_{21}}}&{{A_{22}}}&{{A_{23}}}\\ {{A_{31}}}&{{A_{32}}}&{{A_{33}}} \end{array}} \right]\)
A11 = Aij = (-1)n × (cross multiplication of remaining column and row) = (-1)n × \(\left( {\begin{array}{*{20}{c}} {{A_{22}}}&{{A_{23}}}\\ {{A_{32}}}&{{A_{33}}} \end{array}} \right)\)
Where, n = (i + j)
We follow the same procedure for the A11, A12, A13, .......as so on. Also find the determinant of matrix A. Then applies the given formula after that we finally obtain the A-1.
Inverse of a Matrix Question 8:
Let A and B be matrices of order 3. Which of the following is true?
Answer (Detailed Solution Below)
Inverse of a Matrix Question 8 Detailed Solution
Concept:
Apply element-wise inversion i.e multiply by the inverse of the same element to make it an identity matrix until the desired objective is reached.
Calculation:
Let (BA)-1 = K
Multiply by the BA on both sides, in the same order
(BA)(BA)-1 = (BA)K
I = BAK {∵ (A)(A-1) = I}
Multiply B-1 on both the sides
B-1I = B-1BAK
B-1 = AK
Multiply A-1 on both sides
A-1B-1 = A-1AK
A-1B-1 = K
so, (BA)-1 = A-1B-1 {∵ (BA)-1 = K}
Inverse of a Matrix Question 9:
The inverse of \(\left( {\begin{array}{*{20}{c}} 3&1\\ 7&5 \end{array}} \right)\) is
Answer (Detailed Solution Below)
Inverse of a Matrix Question 9 Detailed Solution
Given: \(\left( {\begin{array}{*{20}{c}} 3&1\\ 7&5 \end{array}} \right)\)
Concept used:
The inverse of matrix (A) = adjoint of A / det(A)
or \(\left( {\begin{array}{*{20}{c}} a&b\\ c&d \end{array}} \right)\)(-1) = \(\left( {\begin{array}{*{20}{c}} d&-b\\ -c&a \end{array}} \right)\)/ (Determinant A)
Calculations:
The inverse of \(\left( {\begin{array}{*{20}{c}} 3&1\\ 7&5 \end{array}} \right)\) = \(\left( {\begin{array}{*{20}{c}} 5&-1\\ -7&3 \end{array}} \right)\)/ (Determinant of given matrix)
⇒ \(\left( {\begin{array}{*{20}{c}} 5&-1\\ -7&3 \end{array}} \right)\)/ (15 - 7)
⇒ 1/8 × \(\left( {\begin{array}{*{20}{c}} 5&-1\\ -7&3 \end{array}} \right)\)
Hence, The correct option is 3.
Inverse of a Matrix Question 10:
A is a scalar matrix with scalar k ≠ 0 of order 3. Then A-1 is
Answer (Detailed Solution Below)
Inverse of a Matrix Question 10 Detailed Solution
Since A is a scalar matrix, we have \(A = \left( {\begin{array}{*{20}{c}} k&0&0\\ 0&k&0\\ 0&0&k \end{array}} \right)\)
\(\therefore \left| A \right| = {k^3}\)
\(\begin{array}{l} adj\;A = \left( {\begin{array}{*{20}{c}} {{k^2}}&0&0\\ 0&{{k^2}}&0\\ 0&0&{{k^2}} \end{array}} \right)\\ {A^{ - 1}} = \frac{1}{{\left| A \right|}}\left( {adj\;A} \right) = \frac{1}{{{k^3}}}\left( {\begin{array}{*{20}{c}} {{k^2}}&0&0\\ 0&{{k^2}}&0\\ 0&0&{{k^2}} \end{array}} \right)\\ \frac{1}{k}\left( {\begin{array}{*{20}{c}} 1&0&0\\ 0&1&0\\ 0&0&1 \end{array}} \right) = \frac{1}{k}{\rm{I}} \end{array}\)