Skew Lines MCQ Quiz in मल्याळम - Objective Question with Answer for Skew Lines - സൗജന്യ PDF ഡൗൺലോഡ് ചെയ്യുക

Last updated on Mar 23, 2025

നേടുക Skew Lines ഉത്തരങ്ങളും വിശദമായ പരിഹാരങ്ങളുമുള്ള മൾട്ടിപ്പിൾ ചോയ്സ് ചോദ്യങ്ങൾ (MCQ ക്വിസ്). ഇവ സൗജന്യമായി ഡൗൺലോഡ് ചെയ്യുക Skew Lines MCQ ക്വിസ് പിഡിഎഫ്, ബാങ്കിംഗ്, എസ്എസ്‌സി, റെയിൽവേ, യുപിഎസ്‌സി, സ്റ്റേറ്റ് പിഎസ്‌സി തുടങ്ങിയ നിങ്ങളുടെ വരാനിരിക്കുന്ന പരീക്ഷകൾക്കായി തയ്യാറെടുക്കുക

Latest Skew Lines MCQ Objective Questions

Top Skew Lines MCQ Objective Questions

Skew Lines Question 1:

If the foot of the perpendicular from point (4, 3, 8) on the line , l ≠ 0 is (3, 5, 7), then the shortest distance between the line L1 and line  is equal to: 

Answer (Detailed Solution Below)

Option 1 :

Skew Lines Question 1 Detailed Solution

Concept:

The shortest distance between two skew lines  and    is given by:

d = 

 

Explanation:

Given,   ---(1)

 and  ---(2)

The foot of the perpendicular from the point (4,3,8) on the line L1 is (3,5,7).

So, point (3,5,7) satisfies the equation of the line L1.

Substitute x=3, y=5, and z=7 in equation (1), we have

⇒ 

⇒ 

Now,  = 1

⇒ 3-a= l

⇒ a+l=3  ---(3)

And  =1

⇒ 7-b =4

b=3

Direction cosines of the line joining points (4,3,8) and (3,5,7) are (3-4,5-3,7-8) i.e.(-1,2, -1).

The direction cosines of the line L1 are (l,3,4).

Both lines are perpendicular.

∴ l× (-1)+2× 3+(-1)× 4 =0

⇒ -l +6-4=0

⇒-l+2=0

l=2

Substitute the value of l in equation (3), we have

⇒ a+2=3

a =1

Substitute the values of a,b and l in equation (1),

and  

Direction cosines of the line L1 and L2 are (2,3,4) and (3,4,5) respectively.

Now, the shortest distance between line L1 and L2 is

d = 

=

=

=

The shortest distance between lines L1 and L2 is .

Hence, the correct answer is option (1).

Skew Lines Question 2:

Find the shortest distance between the lines given by 

 = 8î - 9ĵ + 10k̂ + λ(3î - 16ĵ + 7k̂) and 

 = 15î + 29ĵ + 5k̂ + μ(3î + 8ĵ - 5k̂).

Given that = 24î + 36ĵ + 72k̂ with its magnitude as 84 where   and  are the direction of the two lines respectively.

  1. 6
  2. 14
  3. 196
  4. 49

Answer (Detailed Solution Below)

Option 2 : 14

Skew Lines Question 2 Detailed Solution

Concept:

Now, the shortest distance between two lines is given by 

Calculation:

Given:   = 24î + 36ĵ + 72k̂ with its magnitude as 84

 = 8î - 9ĵ + 10k̂ + λ (3î - 16ĵ + 7k̂)

⇒ = 8î - 9ĵ + 10k̂ and = (3î - 16ĵ + 7k̂) ...(i)

Also,  = 15î + 29ĵ + 5k̂ + μ(3î + 8ĵ - 5k)

 = 15î + 29ĵ + 5k̂ and  = (3î + 8ĵ - 5k̂) ....(ii)

Now, ( -  ) = (15 - 8)î + (29 + 9)ĵ + (5 - 10)k̂ 

= 7î + 38ĵ - 5k̂ 

∴ Shortest distance 

Hence, option 2 is the correct answer.

Skew Lines Question 3:

Find the shortest distance between the lines  ?

Answer (Detailed Solution Below)

Option 4 :

Skew Lines Question 3 Detailed Solution

Concept:

The shortest distance between the skew line  is given by:

Calculation:

Given: Equation of lines is 

By comparing the given equations with , we get

⇒ x1 = -1, y1 = 1, z1 = 9, a1 = 2, b1 = 1 and c1 = - 3

Similarly, x2 = 3, y2 = -15, z2 = 9, a2 = 2, b2 = -7 and c2 = 5

So, 

And 

As we know that shortest distance between two skew lines is given by:

⇒ 

Hence, option D is the correct answer.

Skew Lines Question 4:

The shortest distance between the lines  and  is :

  1. 6√3

Answer (Detailed Solution Below)

Option 1 :

Skew Lines Question 4 Detailed Solution

Calculation

Lines passed through the points

,

Shortest distance = 

Hence option 1 is correct

Skew Lines Question 5:

Find the shortest distance between the lines  and 

  1. 2
  2. None of these

Answer (Detailed Solution Below)

Option 3 :

Skew Lines Question 5 Detailed Solution

Concept:

The shortest distance between the lines   and  is given by:

Calculation:

Here we have to find the shortest distance between the lines ​​ and 

Let line L1 be represented by the equation  and line L2 be represented by the equation 

⇒ x1 = 5, y1 = -2, z1 = 0  and a1 = 7, b1 = -5, c1 = 1.

⇒ x2 = 0, y2 = 0, z2 = 0  and a2 = 1, b2 = 2, c2 = 3.

∵ The shortest distance between the lines is given by:  

 

⇒ 

⇒ 

Hence, option 3 is correct.

Skew Lines Question 6:

Find the shortest distance between the lines  ?

  1. None of these

Answer (Detailed Solution Below)

Option 3 :

Skew Lines Question 6 Detailed Solution

Concept:

The shortest distance between the skew line  is given by:

Calculation:

Given: Equation of lines is 

By comparing the given equations with , we get

⇒ x1 = 3, y1 = 4, z1 = - 2, a1 = -1, b1 = 2 and c1 = 1

Similarly, x2 = 1, y2 = - 7, z2 = -2, a2 = 1, b2 = 3 and c2 = 2

So, 

As we know that shortest distance between two skew lines is given by:

⇒ 

Hence, option C is the correct answer.

Skew Lines Question 7:

Let λ be an integer. If the shortest distance between the lines x – λ = 2y – 1 = -2z and x = y + 2λ = z – λ is √7/2√2, then the value of |λ| is _________

Answer (Detailed Solution Below) 1

Skew Lines Question 7 Detailed Solution

Calculation:

Distance between skew lines  and  is given by:

d = 

Calculation:

Given, (x – λ)/1 = (y – 1/2)/(1/2) = z/(-1/2)

(x – λ)/2 = (y-1/2)/1 = z/(-1) …(1) Point on line = (λ, 1/2, 0)

x/1 = (y + 2λ)/1 = (z – λ)/1 …(2) Point on line = (0, -2λ, λ)

∴ Distance between skew lines = 

= |-5λ – 3/2|/

= √7/(2√2) (Given)

⇒ |10λ + 3| = 7

⇒ 10λ + 3 = ± 7

⇒ λ = - 1 [∵ λ is an integer]

⇒ |λ| = 1

∴ The value of |λ| is 1. 

Skew Lines Question 8:

The shortest distance between the lines  is

  1. 6√3
  2. 4√3
  3. 5√3
  4. 8√3

Answer (Detailed Solution Below)

Option 2 : 4√3

Skew Lines Question 8 Detailed Solution

Concept:

The shortest distance between the lines  and  is given by d = 

Calculation:

Given,  and 

∴ a1  and b1

a2 =  and b2

⇒ a2 – a1

∴ 

⇒ 

∴  = 16[-4 + 16] = (16)(12)

⇒ d =  = 4√3

∴ The shortest distance is 4√3.

The correct answer is Option 2.

Skew Lines Question 9:

The shortest distance between lines L1 and L2, where  and L2 is the line passing through the points A(-4, 4, 3). B(-1, 6, 3) and perpendicular to the line  is

Answer (Detailed Solution Below)

Option 3 :

Skew Lines Question 9 Detailed Solution

Calculation

⇒ 

⇒ 

⇒ 

⇒ 

Hence, Option (3) is correct

Skew Lines Question 10:

If d1 is the shortest distance between the lines  x + 1 = 2y = -12z, x = y + 2 = 6z – 6 and d2 is the shortest distance between the lines , then the value of is :

Answer (Detailed Solution Below) 16

Skew Lines Question 10 Detailed Solution

Calculation

Given

d1 = shortest distance between L1 & L2 

⇒ d1

⇒ d1 = 2

d2 = shortest distance between L3 & L4

⇒  

Hence

 = 16

Hot Links: all teen patti game teen patti game online teen patti go teen patti vungo