Skew Lines MCQ Quiz in தமிழ் - Objective Question with Answer for Skew Lines - இலவச PDF ஐப் பதிவிறக்கவும்

Last updated on Mar 17, 2025

பெறு Skew Lines பதில்கள் மற்றும் விரிவான தீர்வுகளுடன் கூடிய பல தேர்வு கேள்விகள் (MCQ வினாடிவினா). இவற்றை இலவசமாகப் பதிவிறக்கவும் Skew Lines MCQ வினாடி வினா Pdf மற்றும் வங்கி, SSC, ரயில்வே, UPSC, மாநில PSC போன்ற உங்களின் வரவிருக்கும் தேர்வுகளுக்குத் தயாராகுங்கள்.

Latest Skew Lines MCQ Objective Questions

Top Skew Lines MCQ Objective Questions

Skew Lines Question 1:

If the foot of the perpendicular from point (4, 3, 8) on the line \({L_1}:\frac{{x - a}}{l} = \frac{{y - 2}}{3} = \frac{{z - b}}{4}\), l ≠ 0 is (3, 5, 7), then the shortest distance between the line L1 and line \({L_2}:\frac{{x - 2}}{3} = \frac{{y - 4}}{4} = \frac{{z - 5}}{5}\) is equal to: 

  1. \(1 \over \sqrt6\)
  2. \(1 \over 2\)
  3. \(1 \over \sqrt3\)
  4. \(\sqrt {2 \over 3}\)

Answer (Detailed Solution Below)

Option 1 : \(1 \over \sqrt6\)

Skew Lines Question 1 Detailed Solution

Concept:

The shortest distance between two skew lines \(\frac{{x - x_1}}{l_1} = \frac{{y - y_1}}{m_1} = \frac{{z - z_1}}{n_1}\) and  \(\frac{{x - x_2}}{l_2} = \frac{{y - y_2}}{m_2} = \frac{{z - z_2}}{n_2}\)  is given by:

d = \(\frac{\begin{vmatrix}x_2-x_1&y_2-y_1&z_2-z_1\\l_1&m_1&n_1\\l_2&m_2&n_2\end{vmatrix}}{\sqrt{(m_1n_2-m_2n_1)^2+(l_1n_2-n_1l_2)^2+(l_1m_2-m_1l_2)^2}}\)

 

Explanation:

Given,  \({L_1}:\frac{{x - a}}{l} = \frac{{y - 2}}{3} = \frac{{z - b}}{4}\) ---(1)

 and \({L_2}:\frac{{x - 2}}{3} = \frac{{y - 4}}{4} = \frac{{z - 5}}{5}\) ---(2)

The foot of the perpendicular from the point (4,3,8) on the line L1 is (3,5,7).

So, point (3,5,7) satisfies the equation of the line L1.

Substitute x=3, y=5, and z=7 in equation (1), we have

⇒ \(\frac{{3 - a}}{l} = \frac{{5 - 2}}{3} = \frac{{7 - b}}{4}\)

⇒ \(\frac{{3 - a}}{l} = \frac{{3}}{3} = \frac{{7 - b}}{4}\)

\(\frac{{3 - a}}{l} = 1= \frac{{7 - b}}{4}\)

Now, \(\frac{3-a}{l}\) = 1

⇒ 3-a= l

⇒ a+l=3  ---(3)

And \( \frac{{7 - b}}{4}\) =1

⇒ 7-b =4

b=3

Direction cosines of the line joining points (4,3,8) and (3,5,7) are (3-4,5-3,7-8) i.e.(-1,2, -1).

The direction cosines of the line L1 are (l,3,4).

Both lines are perpendicular.

∴ l× (-1)+2× 3+(-1)× 4 =0

⇒ -l +6-4=0

⇒-l+2=0

l=2

Substitute the value of l in equation (3), we have

⇒ a+2=3

a =1

Substitute the values of a,b and l in equation (1),

\({L_1}:\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{4}\)

and  \({L_2}:\frac{{x - 2}}{3} = \frac{{y - 4}}{4} = \frac{{z - 5}}{5}\)

Direction cosines of the line L1 and L2 are (2,3,4) and (3,4,5) respectively.

Now, the shortest distance between line L1 and L2 is

d = \(\frac{\begin{vmatrix}2-1&4-2&5-3\\2&3&4\\3&4&5\end{vmatrix}}{\sqrt{(15-16)^2+(10-12)^2+(8-9)^2}}\)

=\(\frac{\begin{vmatrix}1&2&2\\2&3&4\\3&4&5\end{vmatrix}}{\sqrt{(15-16)^2+(10-12)^2+(8-9)^2}}\)

=\(\frac{1(15-16)-2(10-12)+2(8-9)}{\sqrt{(-1)^2+(-2)^2+(-1)^2}}\)

\(\frac{-1+4-2}{\sqrt{1+4+1}}\)

=\(\frac{1}{\sqrt 6}\)

The shortest distance between lines L1 and L2 is \(\frac{1}{\sqrt 6}\).

Hence, the correct answer is option (1).

Skew Lines Question 2:

Find the shortest distance between the lines given by 

\({\vec r}\) = 8î - 9ĵ + 10k̂ + λ(3î - 16ĵ + 7k̂) and 

\({\vec r}\) = 15î + 29ĵ + 5k̂ + μ(3î + 8ĵ - 5k̂).

Given that \( {{\vec b}_1} \times {{\vec b}_2} \)= 24î + 36ĵ + 72k̂ with its magnitude as 84 where \({{\vec b}_1}\)  and \({{\vec b}_2}\) are the direction of the two lines respectively.

  1. 6
  2. 14
  3. 196
  4. 49

Answer (Detailed Solution Below)

Option 2 : 14

Skew Lines Question 2 Detailed Solution

Concept:

Now, the shortest distance between two lines is given by 

\(= \left| {\frac{{\left( {{{\vec b}_1} \times {{\vec b}_2}} \right).\left( {{{\vec a}_2} - {{\vec a}_1}} \right)}}{{\left| {{{\vec b}_1} \times {{\vec b}_2}} \right|}}} \right|\)

Calculation:

Given:  \( {{\vec b}_1} \times {{\vec b}_2} \) = 24î + 36ĵ + 72k̂ with its magnitude as 84

\(\Rightarrow | {{\vec b}_1} \times {{\vec b}_2} | = 84\)

\({\vec r}\) = 8î - 9ĵ + 10k̂ + λ (3î - 16ĵ + 7k̂)

⇒ \({{\vec a}_1}\)= 8î - 9ĵ + 10k̂ and \({{\vec b}_1}\)= (3î - 16ĵ + 7k̂) ...(i)

Also, \({\vec r}\) = 15î + 29ĵ + 5k̂ + μ(3î + 8ĵ - 5k)

\({{\vec a}_2}\) = 15î + 29ĵ + 5k̂ and \({{\vec b}_2}\) = (3î + 8ĵ - 5k̂) ....(ii)

Now, (\({{{\vec a}_2}}\) - \({{{\vec a}_1}}\) ) = (15 - 8)î + (29 + 9)ĵ + (5 - 10)k̂ 

= 7î + 38ĵ - 5k̂ 

∴ Shortest distance 

\( = \left| {\frac{{\left( {24\hat i + 36\hat j + 72\hat k} \right).\left( {7\hat i + 38\hat j - 5\hat k} \right)}}{{84}}} \right|\)

\( = \left| {\frac{{\left( {2\hat i + 3\hat j + 6\hat k} \right).\left( {7\hat i + 38\hat j - 5\hat k} \right)}}{7}} \right|\)

\(= \left| {\frac{{14 + 114 - 30}}{7}} \right| = 14\)

Hence, option 2 is the correct answer.

Skew Lines Question 3:

Find the shortest distance between the lines \(\frac{{x + 1}}{2} = \frac{{y - 1}}{1} = \frac{{z - 9}}{{ - 3}}\;\;and\;\frac{{x - 3}}{2} = \frac{{y + 15}}{{ - 7}} = \frac{{z - 9}}{5}\) ?

  1. \(5\sqrt 3\)
  2. \(7\sqrt 3\)
  3. \(3\sqrt3\)
  4. \(4\sqrt{3}\)

Answer (Detailed Solution Below)

Option 4 : \(4\sqrt{3}\)

Skew Lines Question 3 Detailed Solution

Concept:

The shortest distance between the skew line \(\frac{{x - {x_1}}}{{{a_1}}} = \frac{{y - {y_1}}}{{{b_1}}} = \frac{{z - {z_1}}}{{{c_1}}}\;and\frac{{x - {x_2}}}{{{a_2}}} = \frac{{y - {y_2}}}{{{b_2}}} = \frac{{z - {z_2}}}{{{c_2}}}\) is given by:

\(SD = \frac{{\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right|}}{{\sqrt {\left\{ {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} \right\}} }}\)

Calculation:

Given: Equation of lines is \(\frac{{x + 1}}{2} = \frac{{y - 1}}{1} = \frac{{z - 9}}{{ - 3}}\;\;and\;\frac{{x - 3}}{2} = \frac{{y + 15}}{{ - 7}} = \frac{{z - 9}}{5}\)

By comparing the given equations with \(\frac{{x - {x_1}}}{{{a_1}}} = \frac{{y - {y_1}}}{{{b_1}}} = \frac{{z - {z_1}}}{{{c_1}}}\;and\frac{{x - {x_2}}}{{{a_2}}} = \frac{{y - {y_2}}}{{{b_2}}} = \frac{{z - {z_2}}}{{{c_2}}}\), we get

⇒ x1 = -1, y1 = 1, z1 = 9, a1 = 2, b1 = 1 and c1 = - 3

Similarly, x2 = 3, y2 = -15, z2 = 9, a2 = 2, b2 = -7 and c2 = 5

So, \(\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} 4&{-16}&0\\ 2&1&{ - 3}\\ 2&{ - 7}&5 \end{array}} \right|\)

\(\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right| = 192\)

And \({{\sqrt {\left\{ {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} \right\}} }}=\sqrt{768}\)

As we know that shortest distance between two skew lines is given by:\(SD = \frac{{\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right|}}{{\sqrt {\left\{ {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} \right\}} }}\)

\(SD=\frac{192}{\sqrt{768}}=4 \sqrt3\)

⇒ \(SD = 4\sqrt{3} \ units\)

Hence, option D is the correct answer.

Skew Lines Question 4:

The shortest distance between the lines \(\frac{x-3}{2}=\frac{y-2}{3}=\frac{z-1}{-1}\) and \(\frac{x+3}{2}=\frac{y-6}{1}=\frac{z-5}{3}\) is :

  1. \(\frac{18}{\sqrt{5}}\)
  2. \(\frac{22}{3 \sqrt{5}}\)
  3. \(\frac{46}{3 \sqrt{5}}\)
  4. 6√3

Answer (Detailed Solution Below)

Option 1 : \(\frac{18}{\sqrt{5}}\)

Skew Lines Question 4 Detailed Solution

Calculation

\(\frac{x+3}{2}=\frac{y-6}{1}=\frac{z-5}{3}\)

Lines passed through the points

\(\vec{a}_{1}=(3,2,1) \text { and } \vec{a}_{2}=(-3,6,5)\),

\(\vec{b}_{1}=2 \hat{i}+3 \hat{j}-\hat{k}\)

\(\vec{b}_{1}=2 \hat{i}+\hat{j}-3 k, \vec{a}_{2}-\vec{a}_{1}=6 \hat{i}-4 f-4 \hat{k}\)

Shortest distance = \(\frac{\left|\left(\vec{a}_{2}-\vec{a}_{1}\right)\left(\vec{b}_{1} \times \vec{b}_{2}\right)\right|}{\left|\left(\vec{b}_{1} \times \vec{b}_{2}\right)\right|}\)

\(\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{ccc} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & -1 \\ 2 & 1 & 3 \end{array}\right|=10 \hat{i}-8 \hat{j}-4 \hat{k}\)

\(\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)=60+32+16=108\)

\(\left|\vec{b}_{1} \times \vec{b}_{2}\right|=\sqrt{100+64+16}=\sqrt{180}\)

\(S . D=\frac{108}{\sqrt{180}}=\frac{108}{6 \sqrt{5}}=\frac{18}{\sqrt{5}}\)

Hence option 1 is correct

Skew Lines Question 5:

Find the shortest distance between the lines \(\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}\) and \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)

  1. \(\frac{5}{\sqrt {42}}\)
  2. 2
  3. \(\frac{9}{\sqrt {42}}\)
  4. None of these

Answer (Detailed Solution Below)

Option 3 : \(\frac{9}{\sqrt {42}}\)

Skew Lines Question 5 Detailed Solution

Concept:

The shortest distance between the lines \(\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}\)  and \(\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}\) is given by:\(d= \frac{\begin{vmatrix} x_{2}-x_{1} &y_{2}-y_{1} &z_{2}-z_{1} \\ a_{1}& b_{1} & c_{1}\\ a_{2}& b_{2} & c_{2} \end{vmatrix}}{\sqrt{(b_{1}c_{2}-b_{2}c_{1})^{2}+(c_{1}a_{2}-c_{2}a_{1})^{2}+(a_{1}b_{2}-a_{2}b_{1})^{2}}}\)

Calculation:

Here we have to find the shortest distance between the lines ​​\(\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}\) and \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)

Let line L1 be represented by the equation \(\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}\) and line L2 be represented by the equation \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)

⇒ x1 = 5, y1 = -2, z1 = 0  and a1 = 7, b1 = -5, c1 = 1.

⇒ x2 = 0, y2 = 0, z2 = 0  and a2 = 1, b2 = 2, c2 = 3.

∵ The shortest distance between the lines is given by:  \(d= \frac{\begin{vmatrix} x_{2}-x_{1} &y_{2}-y_{1} &z_{2}-z_{1} \\ a_{1}& b_{1} & c_{1}\\ a_{2}& b_{2} & c_{2} \end{vmatrix}}{\sqrt{(b_{1}c_{2}-b_{2}c_{1})^{2}+(c_{1}a_{2}-c_{2}a_{1})^{2}+(a_{1}b_{2}-a_{2}b_{1})^{2}}}\)

 

⇒ \(d= \frac{\begin{vmatrix} 0-5 &0+2&0-0 \\ 7& -5 & 1\\ 1& 2 & 3 \end{vmatrix}}{\sqrt{(-15-2)^{2}+(1-21)^{2}+(14+5)^{2}}}\)

⇒ \(d= \frac{\begin{vmatrix} -5 &2&0 \\ 7& -5 & 1\\ 1& 2 & 3 \end{vmatrix}}{\sqrt{(-17)^{2}+(-20)^{2}+(19)^{2}}}\)

\(d= \frac{-5(-15-2)-2(21-1)}{\sqrt{289+400+361}}\)

\(d= \frac{85-40}{\sqrt{1050}} = \frac{9}{\sqrt {42}}\)

Hence, option 3 is correct.

Skew Lines Question 6:

Find the shortest distance between the lines \(\frac{{x - 3}}{{ - 1}} = \frac{{y - 4}}{2} = \frac{{z + 2}}{1}\;\;and\;\frac{{x - 1}}{1} = \frac{{y + 7}}{3} = \frac{{z + 2}}{2}\) ?

  1. \(\sqrt{33}\)
  2. \(\sqrt {31}\)
  3. \(\sqrt{35}\)
  4. None of these

Answer (Detailed Solution Below)

Option 3 : \(\sqrt{35}\)

Skew Lines Question 6 Detailed Solution

Concept:

The shortest distance between the skew line \(\frac{{x - {x_1}}}{{{a_1}}} = \frac{{y - {y_1}}}{{{b_1}}} = \frac{{z - {z_1}}}{{{c_1}}}\;and\frac{{x - {x_2}}}{{{a_2}}} = \frac{{y - {y_2}}}{{{b_2}}} = \frac{{z - {z_2}}}{{{c_2}}}\) is given by:

\(SD = \frac{{\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right|}}{{\sqrt {\left\{ {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} \right\}} }}\)

Calculation:

Given: Equation of lines is \(\frac{{x - 3}}{{ - 1}} = \frac{{y - 4}}{2} = \frac{{z + 2}}{1}\;\;and\;\frac{{x - 1}}{1} = \frac{{y + 7}}{3} = \frac{{z + 2}}{2}\)

By comparing the given equations with \(\frac{{x - {x_1}}}{{{a_1}}} = \frac{{y - {y_1}}}{{{b_1}}} = \frac{{z - {z_1}}}{{{c_1}}}\;and\frac{{x - {x_2}}}{{{a_2}}} = \frac{{y - {y_2}}}{{{b_2}}} = \frac{{z - {z_2}}}{{{c_2}}}\), we get

⇒ x1 = 3, y1 = 4, z1 = - 2, a1 = -1, b1 = 2 and c1 = 1

Similarly, x2 = 1, y2 = - 7, z2 = -2, a2 = 1, b2 = 3 and c2 = 2

So, \(\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} { - 2}&{ - 11}&0\\ { - 1}&2&1\\ 1&3&2 \end{array}} \right|\)

As we know that shortest distance between two skew lines is given by:\(SD = \frac{{\left| {\begin{array}{*{20}{c}} {{x_2} - {x_1}}&{{y_2} - {y_1}}&{{z_2} - {z_1}}\\ {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}} \end{array}} \right|}}{{\sqrt {\left\{ {{{\left( {{a_1}{b_2} - {a_2}{b_1}} \right)}^2} + {{\left( {{b_1}{c_2} - {b_2}{c_1}} \right)}^2} + {{\left( {{c_1}{a_2} - {c_2}{a_1}} \right)}^2}} \right\}} }}\)

⇒ \(SD = \sqrt{35} \ units\)

Hence, option C is the correct answer.

Skew Lines Question 7:

Let λ be an integer. If the shortest distance between the lines x – λ = 2y – 1 = -2z and x = y + 2λ = z – λ is √7/2√2, then the value of |λ| is _________

Answer (Detailed Solution Below) 1

Skew Lines Question 7 Detailed Solution

Calculation:

Distance between skew lines \(\vec{r}=\vec{a_1}+\lambda\vec{b_1}\) and \(\vec{r}=\vec{a_2}+\mu\vec{b_2}\) is given by:

d = \(\rm \frac{[(\vec{a}_2-\vec{a}_1)\cdot(\vec{b}_1 \times\vec{b}_2)]}{|\vec{b}_1 \times \vec{b}_2|}\)

Calculation:

Given, (x – λ)/1 = (y – 1/2)/(1/2) = z/(-1/2)

(x – λ)/2 = (y-1/2)/1 = z/(-1) …(1) Point on line = (λ, 1/2, 0)

x/1 = (y + 2λ)/1 = (z – λ)/1 …(2) Point on line = (0, -2λ, λ)

∴ Distance between skew lines = \(\rm \frac{[(\vec{a}_2-\vec{a}_1)\cdot(\vec{b}_1 \times\vec{b}_2)]}{|\vec{b}_1 \times \vec{b}_2|}\)

\(\frac{\left|\begin{array}{ccc} \lambda & \frac{1}{2}+2 \lambda & -\lambda \\ 2 & 1 & -1 \\ 1 & 1 & 1 \end{array}\right|}{\left|\begin{array}{ccc} \hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 2 & 1 & -1 \\ 1 & 1 & 1 \end{array}\right|}\)

= |-5λ – 3/2|/\(\sqrt{14}\)

= √7/(2√2) (Given)

⇒ |10λ + 3| = 7

⇒ 10λ + 3 = ± 7

⇒ λ = - 1 [∵ λ is an integer]

⇒ |λ| = 1

∴ The value of |λ| is 1. 

Skew Lines Question 8:

The shortest distance between the lines \(\rm \frac{x-3}{2}=\frac{y+15}{-7}=\frac{z-9}{5}\ and\ \frac{x+1}{2}=\frac{y-1}{1}=\frac{z-9}{-3}\) is

  1. 6√3
  2. 4√3
  3. 5√3
  4. 8√3

Answer (Detailed Solution Below)

Option 2 : 4√3

Skew Lines Question 8 Detailed Solution

Concept:

The shortest distance between the lines \(\frac{x-x_0}{a_0}=\frac{y-y_0}{b_0}=\frac{z-z_0}{c_0} \) and \(\frac{x-x_1}{a_1}=\frac{y-y_1}{b_1}=\frac{z-z_1}{c_1} \) is given by d = \(\left|\frac{\left(\vec{a}_2-\vec{a}_1\right) \cdot\left(\vec{b}_1 \times \vec{b}_2\right)}{\left|\vec{b}_1 \times \vec{b}_2\right|}\right|\)

Calculation:

Given, \(\frac{x-3}{2}=\frac{y+15}{-7}=\frac{z-9}{5} \) and \(\frac{x+1}{2}=\frac{y-1}{1}=\frac{z-9}{-3}\)

∴ a1 \(3\hat{i} -15\hat{j}+ 9\hat{k}\) and b1\(2\hat{i} -7\hat{j}+5\hat{k}\)

a2 = \(-1\hat{i}+\hat{j}+9\hat{k}\) and b2\(2\hat{i}+\hat{j}-3\hat{k}\)

⇒ a2 – a1\(-4\hat{i}+16\hat{j}+0\hat{k}\)

∴ \(\overline{\mathrm{b}}_1 \times \overline{\mathrm{b}}_2=\left|\begin{array}{ccc} \hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 2 & -7 & 5 \\ 2 & 1 & -3 \end{array}\right|=\hat{\mathrm{i}}(16)-\hat{\mathrm{j}}(-16)+\hat{\mathrm{k}}(16)\)

\(16(\hat{i}+\hat{j}+\hat{k})\)

⇒ \(\left|\bar{b}_1 \times \bar{b}_2\right|=16 \sqrt{3}\)

∴ \(\left(\overline{\mathrm{a}}_2-\overline{\mathrm{a}}_1\right) \cdot\left(\overline{\mathrm{b}}_1-\overline{\mathrm{b}}_2\right)\) = 16[-4 + 16] = (16)(12)

⇒ d = \(\frac{(16)(12)}{16 \sqrt{3}}\) = 4√3

∴ The shortest distance is 4√3.

The correct answer is Option 2.

Skew Lines Question 9:

The shortest distance between lines L1 and L2, where \(\rm L_1:\frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+4}{2}\) and L2 is the line passing through the points A(-4, 4, 3). B(-1, 6, 3) and perpendicular to the line \(\rm \frac{x-3}{-2}=\frac{y}{3}=\frac{z-1}{1}\) is

  1. \(\frac{121}{\sqrt{221}}\)
  2. \(\frac{24}{\sqrt{117}}\)
  3. \(\frac{141}{\sqrt{221}}\)
  4. \(\frac{42}{\sqrt{117}}\)

Answer (Detailed Solution Below)

Option 3 : \(\frac{141}{\sqrt{221}}\)

Skew Lines Question 9 Detailed Solution

Calculation

\(L_2=\frac{x+4}{3}=\frac{y-4}{2}=\frac{z-3}{0}\)

\(\therefore \text { S.D }=\frac{\left|\begin{array}{ccc} \mathrm{x}_2-\mathrm{x}_1 & \mathrm{y}_2-\mathrm{y}_1 & \mathrm{z}_2-\mathrm{z}_1 \\ 2 & -3 & 2 \\ 3 & 2 & 0 \end{array}\right|}{\left|\overrightarrow{\mathrm{n}_1} \times \overrightarrow{\mathrm{n}_2}\right|}\)

⇒ \(\frac{\left|\begin{array}{ccc} 5 & -5 & -7 \\ 2 & -3 & 2 \\ 3 & 2 & 0 \end{array}\right|}{\left|\overrightarrow{n_1} \times \overrightarrow{n_2}\right|}\)

⇒ \(\frac{141}{|-4 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+13 \hat{k}|}\)

⇒ \(\frac{141}{\sqrt{16+36+169}}\)

⇒ \(\frac{141}{\sqrt{221}}\)

Hence, Option (3) is correct

Skew Lines Question 10:

If d1 is the shortest distance between the lines  x + 1 = 2y = -12z, x = y + 2 = 6z – 6 and d2 is the shortest distance between the lines \(\frac{x-1}{2}=\frac{y+8}{-7}=\frac{z-4}{5}, \frac{x-1}{2}=\frac{y-2}{1}=\frac{z-6}{-3}\), then the value of \(\frac{32 \sqrt{3} d_1}{d_2}\) is :

Answer (Detailed Solution Below) 16

Skew Lines Question 10 Detailed Solution

Calculation

Given

\(\mathrm{L}_1: \frac{\mathrm{x}+1}{1}=\frac{\mathrm{y}}{1 / 2}=\frac{\mathrm{z}}{-1 / 12}, \mathrm{~L}_2: \frac{\mathrm{x}}{1}=\frac{\mathrm{y}+2}{1}=\frac{\mathrm{z}-1}{\frac{1}{6}}\)

d1 = shortest distance between L1 & L2 

⇒ d1\(\left|\frac{\left(\overrightarrow{\mathrm{a}}_2-\overrightarrow{\mathrm{a}}_1\right) \cdot\left(\overrightarrow{\mathrm{b}}_1 \times \overrightarrow{\mathrm{b}}_2\right)}{\left|\left(\overrightarrow{\mathrm{b}}_1 \times \overrightarrow{\mathrm{b}}_2\right)\right|}\right|\)

⇒ d1 = 2

\(\mathrm{L}_3: \frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}+8}{-7}=\frac{\mathrm{z}-4}{5}, \mathrm{~L}_4: \frac{\mathrm{x}-1}{2}=\frac{\mathrm{y}-2}{1}=\frac{\mathrm{z}-6}{-3}\)

d2 = shortest distance between L3 & L4

⇒ \(\mathrm{d}_2=\frac{12}{\sqrt{3}}\) 

Hence

\(\frac{32 \sqrt{3} \mathrm{~d}_1}{\mathrm{~d}_2}=\frac{32 \sqrt{3} \times 2}{\frac{12}{\sqrt{3}}}\) = 16

Get Free Access Now
Hot Links: teen patti palace teen patti master game teen patti star login