Exponential Function MCQ Quiz in मराठी - Objective Question with Answer for Exponential Function - मोफत PDF डाउनलोड करा

Last updated on Mar 12, 2025

पाईये Exponential Function उत्तरे आणि तपशीलवार उपायांसह एकाधिक निवड प्रश्न (MCQ क्विझ). हे मोफत डाउनलोड करा Exponential Function एमसीक्यू क्विझ पीडीएफ आणि बँकिंग, एसएससी, रेल्वे, यूपीएससी, स्टेट पीएससी यासारख्या तुमच्या आगामी परीक्षांची तयारी करा.

Latest Exponential Function MCQ Objective Questions

Top Exponential Function MCQ Objective Questions

Exponential Function Question 1:

If 2x = 3y = 6+z, then the value of \(-(\frac{1}{x}+\frac{1}{y})+\frac{1}{z}=\)

  1. 0
  2. 1
  3. \(\frac{1}{3}\)
  4. \(\frac{1}{6}\)

Answer (Detailed Solution Below)

Option 1 : 0

Exponential Function Question 1 Detailed Solution

Formula used:

X(a + b) = Xc then, (a + b) = c

Calculation:

Let 2x = 3y = 6+z = k 

2x = k then, 2 = k1/x

3y = k then, 3 = k1/y

6+z = k then, 6 = k1/z 

Now, We know that

2 × 3 = 6

⇒ k1/x × k1/y = k1/z

⇒ k(1/x + 1/y) = k1/z

⇒ 1/x + 1/y = 1/z

⇒ -(1/x + 1/y) + 1/z = 0 

Note:- The official question is wrong, the updated question and the solution is provided.

Exponential Function Question 2:

If \(x^{3^n}+y^{3^n}\) is divisible by x + y, then

  1. n ≥ 0, integer
  2. n is only positive even integer
  3. n is only odd integer
  4. n is only positive odd integer

Answer (Detailed Solution Below)

Option 1 : n ≥ 0, integer

Exponential Function Question 2 Detailed Solution

Explanation:

It is given that \(p(n)=x^{3^{n}}+y^{3^{n}}\) is divisible by x + y.

Let us put n = 0, we get

\(p(0)=x^{3^{0}}+y^{3^{0}}\)

⇒ p(0) = x + y      (∵ a0 = 1)

⇒ p(0) is divisible by x + y

Now, let's put n = 1, we get

p(1) = x3 + y3 

⇒ p(1) = (x + y)(x2 + y2 - xy)      [∵ x3 + y3 = (x + y)(x2 + y2 - xy)]

⇒ p(1) is divisible by x + y

Now, let's put n = 2, 

\(p(2)=x^{3^{2}}+y^{3^{2}}\)

⇒ p(2) = x9 + y9 

⇒ p(2) = (x3 + y3)(x6 + y6 - x3y3)

⇒ p(2) is divisible by x + y

Thus, we can say that p(n) is divisible by x + y for all values of n ≥ 0, where n is an integer. 

Exponential Function Question 3:

Comprehension:

Consider the following for the items that follow :

Let f(x) = |x| + 1 and g(x) = [x] - 1, where [.] is the greatest integer function.

Let \(h(x)=\frac{f(x)}{g(x)}\)

What is \(\displaystyle \lim _{x \rightarrow 0^{-}} h(x)+\lim _{x \rightarrow 0+} h(x)\) equal to ?

  1. \(-\frac{3}{2}\)
  2. \(-\frac{1}{2}\)
  3. \(\frac{1}{2}\)
  4. \(\frac{3}{2}\)

Answer (Detailed Solution Below)

Option 1 : \(-\frac{3}{2}\)

Exponential Function Question 3 Detailed Solution

Given -

Let f(x) = |x| + 1 and g(x) = [x] - 1, \(h(x)=\frac{f(x)}{g(x)}\)

where [.] is the greatest integer function.

Let \(h(x)=\frac{f(x)}{g(x)}\)

Explanation -

Step 1: Evaluate \(\displaystyle \lim _{x \rightarrow 0^{-}} h(x)\)

For x → 0- (approaching 0 from the left):

f(x) = |x| + 1 = -x + 1 (since x < 0 )

g(x) = [x] - 1 = -1 - 1 = -2 (since [x] = -1 when -1 < x < 0 )

Thus, 

h(x) = \(\frac{f(x)}{g(x)} = \frac{-x + 1}{-2} = \frac{x - 1}{2}\)

As x → 0- :

\(lim_{{x → 0^-}} h(x) = \frac{0 - 1}{2} = -\frac{1}{2}\)

Step 2: Evaluate \(\lim_{{x → 0^+}} h(x)\)

For x → 0+ (approaching 0 from the right):

f(x) = |x| + 1 = x + 1 (since x > 0 )

g(x) = [x] - 1 = -1 (since [x] = 0 when 0 ≤ x < 1 )

Thus,

h(x) = \(\frac{f(x)}{g(x)} = \frac{x + 1}{-1} = -(x + 1)\)

As x → 0+ :

\(\lim_{{x → 0^+}} h(x) = -(0 + 1) = -1\)

Step 3: Sum of the limits

Now, sum the left-hand limit and the right-hand limit:

\(\lim_{{x → 0^-}} h(x) + \lim_{{x → 0^+}} h(x) = -\frac{1}{2} + (-1) = -\frac{1}{2} - 1 = -\frac{3}{2}\)

So, the answer is -3/2.

Exponential Function Question 4:

Comprehension:

Consider the following for the items that follow :

Let f(x) = |x| + 1 and g(x) = [x] - 1, where [.] is the greatest integer function.

Let \(h(x)=\frac{f(x)}{g(x)}\)

Consider the following statements :

1. f(x) is differentiable for all x < 0

2. g(x) is continuous at x = 0.0001

3. The derivative of g(x) at x = 2.5 is 1

Which of the statements given above are correct?

  1. 1 and 2 only
  2. 2 and 3 only
  3. 1 and 3 only
  4. 1, 2 and 3

Answer (Detailed Solution Below)

Option 1 : 1 and 2 only

Exponential Function Question 4 Detailed Solution

Given -

Let f(x) = |x| + 1 and g(x) = [x] - 1, \(h(x)=\frac{f(x)}{g(x)}\)

where [.] is the greatest integer function.

Let \(h(x)=\frac{f(x)}{g(x)}\)

Explanation -

Statement 1: f(x) is differentiable for all x < 0 .

The function f(x) = |x| + 1 can be written as:

\(f(x) = -x + 1 \quad \text{for} \; x < 0\)

The function -x + 1 is differentiable for all x < 0 because it is a linear function.

Therefore, Statement 1 is correct.

Statement 2: g(x) is continuous at x = 0.0001 .

The function g(x) = [x] - 1 :

For \(0 ≤ x < 1 , \) [x] = 0

Therefore, g(x) =[x] - 1 = 0 - 1 = -1

At x = 0.0001 , which is in the interval 0 ≤ x < 1 :

⇒ g(0.0001) = -1

Since the greatest integer function is not continuous at integer points, but 0.0001 is not an integer, g(x) does not have any discontinuity at x = 0.0001 .

Therefore, Statement 2 is correct.

Statement 3: The derivative of g(x) at x = 2.5 is 1.

The function g(x) =[x] - 1 is a piecewise constant function, which means its derivative is zero almost everywhere.

For 2 ≤ x < 3 , [x] = 2

Therefore, g(x) = 2 - 1 = 1

Since g(x) is constant in the interval 2 ≤ x < 3 , its derivative is 0 in this interval.

Thus, Statement 3 is incorrect.

Hence Option (1) is Correct.

Exponential Function Question 5:

Which of the following has the highest value?

  1. 152
  2. 64
  3. 27
  4. 35

Answer (Detailed Solution Below)

Option 2 : 64

Exponential Function Question 5 Detailed Solution

The correct answer is 64

Key Points

  • As the above Question:  
    • 15= 15*15 = 225
    • 6= 6*6*6*= 1296
    • 2= 2*2*2*2*2*2*2 = 128
    • 35 = 3*3*3*3*3 = 243

So, 64 has the highest value. 

Exponential Function Question 6:

Comprehension:

​Directions: Read the following information and answer the two items that follow:

Consider the equation

y = ex log x

What is \(\frac{d^2y}{dx^2}\) at x = 1 equal to?

  1. 0
  2. log 2
  3. 2 log 2
  4. 2

Answer (Detailed Solution Below)

Option 4 : 2

Exponential Function Question 6 Detailed Solution

Concept:

\(\frac{d(uv)}{dx} = u \times \frac{dv}{dx} + v \times \frac{du}{dx}\)

Calculation:

Given: y = ex log x

By applying log both the sides we get

⇒ log y = log (e)x log x

⇒ log y = x log x log e             [log xa = a log x]

⇒ log y = x log x      ------(i)      [log e = 1]

Differentiating both sides with respect to x, using product rule \(\frac{d(uv)}{dx} = u \times \frac{dv}{dx} + v \times \frac{du}{dx}\), we get,

⇒ \(\frac{d(log \ y)}{dx} = x \times \frac{d(log\ x)}{dx} + log \ x \times \frac{dx}{dx}\)

⇒ \(\frac{1}{y}\frac{dy}{dx} = x \times \frac{1}{x} \frac{dx}{dx}+ log \ x\)

⇒ \(\frac{1}{y}\frac{dy}{dx} = 1+ log \ x\)

 \(\frac{dy}{dx} = y[1+ log \ x]\) 

Differentiating both sides with respect to x, using product rule \(\frac{d(uv)}{dx} = u \times \frac{dv}{dx} + v \times \frac{du}{dx}\), we get,

\(\frac{d^2y}{dx^2}=[y.\frac{1}{x}.\frac{dx}{dx}+(1 + log\ x)\frac{dy}{dx}]\)

⇒ \(\frac{d^2y}{dx^2}=[\frac{y}{x}+(1 + log\ x)\frac{dy}{dx}]\)

⇒ \(\frac{d^2y}{dx^2}=[\frac{x^x }{x}+(1 + log\ x)\ x^x(1+log\ x)]\).....(here, \(\frac{dy}{dx}=x^x(1+logx)\))

⇒ \(\frac{d^2y}{dx^2}=x^x(1+log\ x)[\frac{1}{x(1+log\ x)}+(1 + log\ x)]\)

Now, \(\frac{d^2y}{dx^2}\) at x = 1 = 2.

∴ \(\frac{d^2y}{dx^2}\) at x = 1 equal to 2.

Exponential Function Question 7:

\(\rm\displaystyle\lim _{x \rightarrow 0}\frac{e^x−1−x−x^2}{x^2}\) =

  1. 0
  2. \(\frac{1}{2}\)
  3. \(\frac{−1}{2}\)
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 3 : \(\frac{−1}{2}\)

Exponential Function Question 7 Detailed Solution

Given:

The given limiting function is as follows,

\(​\rm\displaystyle\lim _{x \rightarrow 0}\frac{e^x−1−x−x^2}{x^2}\) 

Concept:

Use the L'hospital rule for the limit \(\lim_{x \to a} \frac{f(x)}{g(x)}\) of the form \(\frac{0}{0}\)

\(\lim_{x \to a} \frac{f(x)}{g(x)}=\lim_{x \to a} \frac{f'(x)}{g'(x)}\)

Where,

f'(x) and g'(x) are the derivative of f(x) and g(x).

Solution:

The given limit is as follows,

\(​\rm\displaystyle\lim _{x \rightarrow 0}\frac{e^x−1−x−x^2}{x^2}\) 

\(​\rm\displaystyle\lim _{x \rightarrow 0}\frac{e^x−1−x−x^2}{x^2}=\frac{0}{0}\)

Derivating f(x) and g(x) we will get,

\(​\rm\displaystyle\lim _{x \rightarrow 0}\frac{e^x−1−2x}{2x}=\frac{0}{0}\)

Still, it is of \(\frac{0}{0}\) form.

Derivating again we will get,

\(​\rm\displaystyle\lim _{x \rightarrow 0}\frac{e^x-2}{2}=\frac{1-2}{2}=\frac{-1}{2}\)

Hence, option 3 is correct.

Exponential Function Question 8:

What is \(\rm \displaystyle \lim _{x\rightarrow 0}\frac{a^x-b^x}{x}\)?

  1. \(\rm \log\left(\frac{a}{b}\right)\)
  2. \(\rm \log\left(\frac{b}{a}\right)\)
  3. ab
  4. More than one of the above
  5. None of the above

Answer (Detailed Solution Below)

Option 1 : \(\rm \log\left(\frac{a}{b}\right)\)

Exponential Function Question 8 Detailed Solution

Calculation:

Given that,

\(\rm\displaystyle\lim_{x \rightarrow 0} \frac{a^x−b^x}{x}\),   form \(\left(\frac{0}{0}\right)\)

Using L' Hospital rule then

\(\rm\displaystyle\lim_{x \rightarrow 0} \frac{a^x \cdot \log a−b^x \log b}{1}\)

Applying limit, we get -

\(\rm\displaystyle\lim_{x \rightarrow 0} \frac{a^x−b^x}{x}=\frac{a^{0}, \log a−b^{0} \cdot \log b}{1}\) = log a − log b

= log \(\rm\left(\frac{a}{b}\right)\)

The correct answer is option "1"

Exponential Function Question 9:

Comprehension:

Consider the following for the next items that follow:

Let f(x) = [x] - 1 and g(x) = x|x|, where [.] is the greatest integer function.

Let \( h(x)=\frac{g(f(x))}{f(g(x))}\).

What is \(\displaystyle \lim _{x \rightarrow 0+}\) h(x) equal to ?

  1. - 1
  2. - 2
  3. 1
  4. 2

Answer (Detailed Solution Below)

Option 3 : 1

Exponential Function Question 9 Detailed Solution

Given:

Let f(x) = [x] - 1 and g(x) = x|x|, where [.] is the greatest integer function.

Calculation:

\( h(x)=\frac{g(f(x))}{f(g(x))}\).

\(\displaystyle \lim _{x \rightarrow 0^+} h(x)=\displaystyle \lim _{x \rightarrow 0^+}\frac{([x]-1) (|[x]-1|)}{[x|x|]-1}\)

For x > 0, |x| = x,

\(\displaystyle \lim _{x \rightarrow 0^+} h(x)=\displaystyle \lim _{x \rightarrow 0^+}\frac{([x]-1) (|[x]-1|)}{[x^2]-1}\)

For a number greater than 0, Let us say x = 0.1, so the greatest integer [x] = 0

For a number greater than 0, Let us say x2 = 0.01, so the greatest integer [x] = 0

\(⇒ \frac{(0-1)(|0-1|)}{-1}\)

As, |-1| = 1, 

\(⇒ \frac{(-1)(1)}{-1}\) = 1

∴ The correct answer is 1, i.e. option (3).

Exponential Function Question 10:

The constant r > 0 in the exponential growth function - p(t)= p0ert-

  1. growth rate
  2. phase line 
  3. carrying capacity
  4. threshold population

Answer (Detailed Solution Below)

Option 1 : growth rate

Exponential Function Question 10 Detailed Solution

Solution- 

The constant r > 0 in the exponential growth function - p(t)= p0ert 

where , r is growth rate . 

Therefore, Correct answer is Option 1).

Get Free Access Now
Hot Links: teen patti master game teen patti live teen patti game paisa wala