Question
Download Solution PDFमूल बिंदु से गुजरने वाले तल \(\vec{r} \cdot(2 \hat{\imath}-6 \hat{\jmath}-3 \hat{k})+1=0\) के लंबवत इकाई सदिश की दिशा कोसाइन ज्ञात कीजिए?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFदिया है:
तल की समीकरण है: \({\vec r} \cdot(2 \hat{\imath}-6 \hat {\jmath}-3 {\hat k})+1=0\)
संकल्पना:
मूल बिंदु से 'd' दूरी पर स्थित एक तल का सदिश समीकरण और रूप मूल \(̂ n\) तक इकाई सदिश समीकरण \(\vec r. \hat n = d\) है।
प्रयुक्त सूत्र:
\(\vec n = \hat n = \frac{1}{|\vec n|}(\vec n)\)
गणना:
हमारे पास है,
⇒ \(⃗{r} \cdot(2 \hat{\imath}-6 \hat{\jmath}-3 \hat{k})+1=0\)
⇒ \(⃗{r} \cdot(2 \hat{\imath}-6 \hat{\jmath}-3 \hat{k}) = -1\)
दोनों पक्षों में -1 से गुणा करने पर,
⇒ \(-\vec {r} \cdot(2 \hat{\imath}-6 \hat{\jmath}-3 \hat{k}) = -1 \times -1 \)
⇒ \({\vec r} \cdot(-2 \hat{\imath}+6 \hat{\jmath}+3 \hat{k}) = 1\) ----- समीकरण (1)
इसलिए, \(\vec n = - 2 \hat i + 6 \hat j + 3 \hat k\)
\(\vec n\) का परिमाण = \(\sqrt{ (-2)^2 + 6^2 + 3^2}\)
⇒ \(|\vec n|\) = \(\sqrt{4 + 36 + 9}\) = \(\sqrt{49}\) = 7
अब, \(\hat n = \frac{1}{|\vec n|}(\vec n)\)
⇒ \(\hat n = \frac{1}{7}(- 2 \hat i + 6 \hat j + 3 \hat k)\)
⇒ \(\vec n = \frac{-2}{7} \hat i + \frac{6}{7} \hat j + \frac{3}{7} \hat k\)
∴ दिए गए तल के लंबवत इकाई सदिश की दिशा कोसाइन \(\frac{-2}{7}, \frac{6}{7}, \frac{3}{7}\) हैं
Last updated on May 26, 2025
-> AAI ATC exam date 2025 will be notified soon.
-> AAI JE ATC recruitment 2025 application form has been released at the official website. The last date to apply for AAI ATC recruitment 2025 is May 24, 2025.
-> AAI JE ATC 2025 notification is released on 4th April 2025, along with the details of application dates, eligibility, and selection process.
-> Total number of 309 vacancies are announced for the AAI JE ATC 2025 recruitment.
-> This exam is going to be conducted for the post of Junior Executive (Air Traffic Control) in Airports Authority of India (AAI).
-> The Selection of the candidates is based on the Computer Based Test, Voice Test and Test for consumption of Psychoactive Substances.
-> The AAI JE ATC Salary 2025 will be in the pay scale of Rs 40,000-3%-1,40,000 (E-1).
-> Candidates can check the AAI JE ATC Previous Year Papers to check the difficulty level of the exam.
-> Applicants can also attend the AAI JE ATC Test Series which helps in the preparation.