यदि y = sin (log x) है तो \(\frac{d^2y}{dx^2}\) ज्ञात करें।

This question was previously asked in
Agniveer Vayu Science (Group X) 22nd March 2025 Memory-Based Paper
View all Airforce Group X Papers >
  1. \( \frac{sin \ (log \ x) \ + \ x\cdot cos \ (log \ x)}{x^2}\)
  2. \( -(\frac{\cdot sin \ (log \ x) \ + \ cos \ (log \ x)}{x^2})\)
  3. \( \frac{x\cdot sin \ (log \ x) \ - \ cos \ (log \ x)}{2x}\)
  4. \( \frac{sin \ (log \ x) \ + \ cos \ (log \ x)}{2x}\)

Answer (Detailed Solution Below)

Option 2 : \( -(\frac{\cdot sin \ (log \ x) \ + \ cos \ (log \ x)}{x^2})\)
Free
Electric charges and coulomb's law (Basic)
1 Lakh Users
10 Questions 10 Marks 10 Mins

Detailed Solution

Download Solution PDF

अवधारणा :

  • \(\frac{{d\left( {\sin x} \right)}}{{dx}} = \; \cos x\)
  • \(\frac{{d\left( {\cos x} \right)}}{{dx}} = \; - \sin x\)
  • \(\frac{{d\left( {\ln x} \right)}}{{dx}} = \frac{1}{x},\;for\;x > 0\)
  • भागफल नियम: \(\frac{{\rm{d}}}{{{\rm{dx}}}}\left[ {\frac{{{\rm{f}}\left( x \right)}}{{{\rm{g}}\left( {\rm{x}} \right)}}} \right] = \frac{{{\rm{g}}\left( {\rm{x}} \right){\rm{\;f'}}\left( {\rm{x}} \right) - {\rm{f}}\left( x \right){\rm{\;g'}}\left( {\rm{x}} \right)}}{{{{\left[ {{\rm{g}}\left( {\rm{x}} \right)} \right]}^2}}}\)

गणना :

दिया हुआ: y = sin (log x)

पहले dy/dx का पता लगाएं

जैसा कि हम जानते हैं कि, \(\frac{{d\left( {\sin x} \right)}}{{dx}} = \; \cos x\) और \(\frac{{d\left( {\ln x} \right)}}{{dx}} = \frac{1}{x},\;for\;x > 0\)

\(\frac{dy}{dx} = \frac{cos\ (log x)}{x}\)

अब, फिर से उपरोक्त समीकरण को भागफल नियम द्वारा अवकलित करके हम प्राप्त करते हैं,

जैसा कि हम जानते हैं कि, \(\frac{{d\left( {\cos x} \right)}}{{dx}} = \; - \sin x\)

⇒ \(\frac{d^2y}{dx^2} = -\frac{\frac{x\cdot sin \ (log x)} {x}\ - \ cos \ (log \ x)}{x^2}\)

⇒ \(\frac{d^2y}{dx^2} = -(\frac{sin \ (log \ x) \ + \ cos \ (log \ x)}{x^2})\)

इसलिए, सही विकल्प 2 है।

Latest Airforce Group X Updates

Last updated on Jun 30, 2025

->Indian Airforce Agniveer (02/2026) Notification has been released. Interested candidates can apply between 11th July to 31st July 2025.

->The Examination will be held 25th September 2025 onwards.

-> Earlier, Indian Airforce Agniveer Group X 2025 Last date had been extended.

-> Candidates applied online from 7th to 2nd February 2025.

-> The online examination was conducted from 22nd March 2025 onwards.

-> The selection of the candidates will depend on three stages which are Phase 1 (Online Written Test), Phase 2 ( DV, Physical Fitness Test, Adaptability Test), and Phase 3 (Medical Examination).

-> The candidates who will qualify all the stages of selection process will be selected for the Air Force Group X posts & will receive a salary ranging of Rs. 30,000.

-> This is one of the most sought jobs. Candidates can also check the Airforce Group X Eligibility here.

More Differential Calculus Questions

Get Free Access Now
Hot Links: teen patti master new version teen patti real cash apk teen patti sweet teen patti flush