अगर \(\vec a = \sqrt 2 \hat i + \sqrt 3 \hat j -x\hat k\;\) एक सदिश है जिसका परिमाण \(\sqrt{10}\) है तो x का मान ज्ञात करें।

  1. ± √7
  2. ± √2
  3. ± √5
  4. ± √3

Answer (Detailed Solution Below)

Option 3 : ± √5
Free
Army Havildar SAC - Quick Quiz
1.9 K Users
5 Questions 10 Marks 6 Mins

Detailed Solution

Download Solution PDF

अवधारणा:

यदि \(\vec a = \;{a_1}\hat i + {a_2}\hat j + {a_3}\hat k\) सदिश है तो \(\vec a\) का परिमाण निम्न द्वारा दिया जाता है: \(\left| {\vec a} \right| = \sqrt {a_1^2 + a_2^2 + a_3^2} \;\)

गणना:

दिया हुआ: \(\vec a = \sqrt 2 \hat i + \sqrt 3 \hat j -x\hat k\;\) एक सदिश है जिसका परिमाण \(\sqrt{10}\) है

जैसा कि हम जानते हैं कि अगर \(\vec a = \;{a_1}\hat i + {a_2}\hat j + {a_3}\hat k\) तो \(\vec a\) का परिमाण निम्न द्वारा दिया जाता है: \(\left| {\vec a} \right| = \sqrt {a_1^2 + a_2^2 + a_3^2} \;\)

तो \(\left| {\vec a} \right| = \sqrt {(\sqrt 2)^2 + (\sqrt 3)^2 + (- x)^2} \; = \sqrt {10}\)

उपरोक्त समीकरण के दोनों पक्षों का वर्ग करके हम प्राप्त करते हैं,

⇒ 10 = 2 + 3 + x2

⇒ x2 = 5

⇒ x = ± √5

इसलिए, विकल्प A सही उत्तर है।

Latest Army Havildar SAC Updates

Last updated on Jul 1, 2025

-> The Indian Army has released the Exam Date for Indian Army Havildar SAC (Surveyor Automated Cartographer).

->The Exam will be held on 9th July 2025.

-> Interested candidates had applied online from 13th March to 25th April 2025.

-> Candidates within the age of 25 years having specific education qualifications are eligible to apply for the exam.

-> The candidates must go through the Indian Army Havildar SAC Eligibility Criteria to know about the required qualification in detail. 

More Magnitude and Directions of a Vector Questions

More Vector Algebra Questions

Get Free Access Now
Hot Links: teen patti bonus teen patti master downloadable content teen patti master