Question
Download Solution PDFअगर \(\vec a = \sqrt 2 \hat i + \sqrt 3 \hat j -x\hat k\;\) एक सदिश है जिसका परिमाण \(\sqrt{10}\) है तो x का मान ज्ञात करें।
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFअवधारणा:
यदि \(\vec a = \;{a_1}\hat i + {a_2}\hat j + {a_3}\hat k\) सदिश है तो \(\vec a\) का परिमाण निम्न द्वारा दिया जाता है: \(\left| {\vec a} \right| = \sqrt {a_1^2 + a_2^2 + a_3^2} \;\)
गणना:
दिया हुआ: \(\vec a = \sqrt 2 \hat i + \sqrt 3 \hat j -x\hat k\;\) एक सदिश है जिसका परिमाण \(\sqrt{10}\) है
जैसा कि हम जानते हैं कि अगर \(\vec a = \;{a_1}\hat i + {a_2}\hat j + {a_3}\hat k\) तो \(\vec a\) का परिमाण निम्न द्वारा दिया जाता है: \(\left| {\vec a} \right| = \sqrt {a_1^2 + a_2^2 + a_3^2} \;\)
तो \(\left| {\vec a} \right| = \sqrt {(\sqrt 2)^2 + (\sqrt 3)^2 + (- x)^2} \; = \sqrt {10}\)
उपरोक्त समीकरण के दोनों पक्षों का वर्ग करके हम प्राप्त करते हैं,
⇒ 10 = 2 + 3 + x2
⇒ x2 = 5
⇒ x = ± √5
इसलिए, विकल्प A सही उत्तर है।
Last updated on Jul 1, 2025
-> The Indian Army has released the Exam Date for Indian Army Havildar SAC (Surveyor Automated Cartographer).
->The Exam will be held on 9th July 2025.
-> Interested candidates had applied online from 13th March to 25th April 2025.
-> Candidates within the age of 25 years having specific education qualifications are eligible to apply for the exam.
-> The candidates must go through the Indian Army Havildar SAC Eligibility Criteria to know about the required qualification in detail.