(2y + x) \(\rm dy\over dx\) = 1 हल कीजिए। 

  1. x + y + 1 = ce-y
  2. x + 2y + 2 = cey
  3. x + 2y + 1 = cey
  4. x + 2y + 2 = ce-y

Answer (Detailed Solution Below)

Option 2 : x + 2y + 2 = cey
Free
NDA 01/2025: English Subject Test
5.5 K Users
30 Questions 120 Marks 30 Mins

Detailed Solution

Download Solution PDF

संकल्पना:

प्रथम-कोटि वाले रैखिक अवकल समीकरण में;

\(\rm {dy\over dx}+Py=Q\), जहाँ P और Q, x के फलन है। 

समाकलन कारक (IF) = e∫ P dx

सामान्य हल: y × (IF) = ∫ Q(IF) dx

गणना:

दिया गया समीकरण निम्न है

(2y + x) \(\rm dy\over dx\) = 1

⇒ (2y + x) = \(\rm dx\over dy\)

⇒ \(\rm dx\over dy\) - x = 2y

∴ यह प्रथम कोटि वाला रैखिक अवकल समीकरण है। 

IF = e∫ -1 dy

⇒ IF = e-y

अब, x × (IF) = ∫ Q (IF) dy

⇒ x × e-y = ∫ 2y × e-y dy

⇒ xe-y = 2\(\rm \left[y\int e^{-y}dy - \int\left\{ {dy\over dy}\times\int e^{-y}dy\right\}dy\right]\)

⇒ xe-y = 2\(\rm \left[-ye^{-y} + \int e^{-y}dy\right]\) + c

⇒ xe-y = 2\(\rm \left[-ye^{-y} - e^{-y}\right]\) + c

⇒ x + 2y + 2 = cey

Latest NDA Updates

Last updated on Jun 18, 2025

->UPSC has extended the UPSC NDA 2 Registration Date till 20th June 2025.

-> A total of 406 vacancies have been announced for NDA 2 Exam 2025.

->The NDA exam date 2025 has been announced. The written examination will be held on 14th September 2025.

-> The selection process for the NDA exam includes a Written Exam and SSB Interview.

-> Candidates who get successful selection under UPSC NDA will get a salary range between Rs. 15,600 to Rs. 39,100. 

-> Candidates must go through the NDA previous year question paper. Attempting the NDA mock test is also essential. 

More Solution of Differential Equations Questions

Get Free Access Now
Hot Links: teen patti pro teen patti earning app teen patti joy teen patti lotus