यदि A = \(\begin{bmatrix} 4 & -3\\ 1 & 0 \end{bmatrix}\) है, तो A + AT का किसके बराबर है?

This question was previously asked in
Navik GD 26 April 2025 Memory-Based Paper (Section I + II)
View all Indian Coast Guard Navik GD Papers >
  1. \( \begin{bmatrix} 4 & -2\\ -3 & 0 \end{bmatrix} \)
  2. \( \begin{bmatrix} 8 & -2\\ -3 & 0 \end{bmatrix} \)
  3. \( \begin{bmatrix} 8 & -2\\ -2 & 0 \end{bmatrix} \)
  4. \( \begin{bmatrix} 8 & -2\\ -2 & 3 \end{bmatrix} \)

Answer (Detailed Solution Below)

Option 3 : \( \begin{bmatrix} 8 & -2\\ -2 & 0 \end{bmatrix} \)
Free
CRPF Head Constable & ASI Steno (Final Revision): Mini Mock Test
20.7 K Users
40 Questions 40 Marks 45 Mins

Detailed Solution

Download Solution PDF

संकल्पना:

एक आव्यूह का पक्षांतर:

वास्तविक आव्यूह के पंक्तियों और स्तंभों को एक-दूसरे से परिवर्तित करके प्राप्त नए आव्यूह को आव्यूह का पक्षांतर कहा जाता है। 

इसे A′ या Aद्वारा दर्शाया जाता है। 

गणना:

दिया गया है:

A = \(\begin{bmatrix} 4 & -3\\ 1 & 0 \end{bmatrix}\)

अब आव्यूह A का पक्षांतर ज्ञात करने के लिए,

AT = \(\begin{bmatrix} 4 & 1\\ -3 & 0 \end{bmatrix} \)

अब, 

A + AT = \(\begin{bmatrix} 4 & -3\\ 1 & 0 \end{bmatrix}+ \begin{bmatrix} 4 & 1\\ -3 & 0 \end{bmatrix}\)

\(= \begin{bmatrix} 4+4 &-3+1 \\ 1+(-3)&0+0 \end{bmatrix}\)

\(= \begin{bmatrix} 8 & -2\\ -2 & 0 \end{bmatrix} \)

Latest Indian Coast Guard Navik GD Updates

Last updated on Jun 11, 2025

-> The Indian Coast Guard Navik GD is a prestigious exam for those who want to serve the country in Defence Services.

-> A total of 260 vacancies have been released through the Coast Guard Enrolled Personnel Test (CGEPT) for the 01/2026 and 02/2026 batch.

-> Candidates can apply online from 11th to 25th June 2025.

-> Candidates who have completed their 10+2 with Maths and Physics are eligible for this post. 

-> Candidates must go through the Indian Coast Guard Navik GD previous year papers.

More Transpose of a Matrix Questions

More Matrices Questions

Get Free Access Now
Hot Links: happy teen patti teen patti master download teen patti live teen patti app