(t2 - 2t) u (t - 1) का लाप्लास रूपांतरण क्या है?

This question was previously asked in
ISRO Scientist Electrical 2020 Paper
View all ISRO Scientist EE Papers >
  1. \(\frac{2}{{{s^3}}}{e^{ - s}} - \frac{2}{{{s^2}}}{e^{ - s}}\)
  2. \(\frac{2}{{{s^3}}}{e^{ - s}} + \frac{2}{{{s^2}}}{e^{ - s}}\)
  3. \(\frac{2}{{{s^3}}}{e^{ - 2s}} - \frac{2}{s}{e^{ - s}}\)
  4. उपरोक्त में से कोई नहीं

Answer (Detailed Solution Below)

Option 4 : उपरोक्त में से कोई नहीं
Free
ISRO Scientist Electrical 2013 Paper
2.1 K Users
80 Questions 240 Marks 90 Mins

Detailed Solution

Download Solution PDF

सिद्धांत:

एक यूनिट स्टेप फलन का लाप्लास रूपांतरण दिया गया है:

u(t) ↔ 1/s

आवृत्ति डोमेन में समय स्थानांतरण का प्रभाव इस प्रकार दर्शाया गया है:

\(u\left( {t - t_0} \right) \leftrightarrow \;\frac{{{e^{ - st_0}}}}{s}\)

इसके अलावा, आवृत्ति विभेदन गुण से, हमारे पास है:

\(t\;u\left( t \right) \leftrightarrow \;\frac{{ - d}}{{ds}}\left( {\frac{1}{s}} \right) \)

अनुप्रयोग:

f(t) = (t2 - 2t) u(t - 1)

= (t2 - 2t + 1 - 1) u(t - 1)

= ((t - 1)2 - 1) u(t - 1)

= (t - 1)2 u(t - 1) - u(t - 1)

u(t) ↔ 1/s

\(u\left( {t - 1} \right) \leftrightarrow \;\frac{{{e^{ - s}}}}{s}\)

u(t) ↔ 1/s

\(t\;u\left( t \right) \leftrightarrow \;\frac{{ - d}}{{ds}}\left( {\frac{1}{s}} \right) = \frac{1}{{{s^2}}}\;\)

\({t^2}\;u\left( t \right) \leftrightarrow \frac{{ - d}}{{ds}}\left( {\frac{1}{{{s^2}}}} \right) = \frac{2}{{{s^3}}}\;\)

\({\left( {t - 1} \right)^2}u\left( {t - 1} \right)\;\leftrightarrow {e^{ - s}}\frac{2}{{{s^3}}}\)

\(F\left( s \right) = \frac{{2{e^{ - s}}}}{{{s^3}}} - \frac{{{e^{ - s}}}}{s}\)

Latest ISRO Scientist EE Updates

Last updated on Nov 23, 2023

The ISRO will soon release the official notification for the ISRO Scientist EE 2025. The Indian Space Research Centre released a total of 21 vacancies for the last recruitment cycle and is expected to release more this year. Candidates can refer to the ISRO Scientist EE Previous Year Papers to understand the type of questions asked in the exam and improve their preparation accordingly. With BE/B.Tech as a basic educational qualification is a great opportunity for job seekers.

More Properties of Laplace Transform Questions

More Laplace Transform Questions

Get Free Access Now
Hot Links: teen patti joy mod apk teen patti pro teen patti master gold download teen patti rules teen patti master plus