Question
Download Solution PDFसमाकल \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx\) का मान क्या है?
Answer (Detailed Solution Below)
Detailed Solution
Download Solution PDFअवधारणा:
\(\rm \displaystyle\int_{a}^{b} f(x) dx = \displaystyle\int_{a}^{b} f(a+b-x) dx\)
गणना:
मान लीजिए कि, I = \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx\) ....(1)
I = \(\rm \displaystyle\int_{0}^{\pi/2} \dfrac{\sqrt{\sin (\dfrac{\pi}{2}-x)}}{\sqrt{\sin (\dfrac{\pi}{2}-x)}+ \sqrt{\cos (\dfrac{\pi}{2}-x)}}dx\)
I = \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\cos x}}{\sqrt{\cos x}+ \sqrt{\sin x}}dx\) ....(2)
(1) और (2) जोड़कर हमारे पास है
2I = \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\cos x}+ \sqrt{sinx}}{\sqrt{\cos x}+ \sqrt{\sin x}}dx\)
2I = \(\rm \displaystyle\int_0^{\pi/2}dx\)
2I = \(\rm[x]^\frac{\pi}{2}_0\)
I = \(\dfrac{\pi}{4}\)
Last updated on Jun 2, 2025
-> NIMCET 2025 admit card will be declared on June 3, 2025. Candidates can download the hall ticket till June 8, 2025.
-> NIMCET 2025 exam is scheduled for June 8, 2025. It will be conducted in Computer-Based Test (CBT) mode and will consist of 120 multiple-choice questions.
-> NIMCET 2025 results will be declared on June 27, 2025.
-> Check NIMCET 2025 previous year papers to know the exam pattern and improve your preparation.