समाकल \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx\) का मान क्या है?

This question was previously asked in
NIMCET 2013 Official Paper
View all NIMCET Papers >
  1. 0
  2. \(-\dfrac{\pi}{4}\)
  3. \(\dfrac{\pi}{2}\)
  4. \(\dfrac{\pi}{4}\)

Answer (Detailed Solution Below)

Option 4 : \(\dfrac{\pi}{4}\)
Free
NIMCET 2020 Official Paper
10.5 K Users
120 Questions 480 Marks 120 Mins

Detailed Solution

Download Solution PDF

अवधारणा:

\(\rm \displaystyle\int_{a}^{b} f(x) dx = \displaystyle\int_{a}^{b} f(a+b-x) dx\)

 

गणना:

मान लीजिए कि, I = \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\sin x}}{\sqrt{\sin x}+ \sqrt{\cos x}}dx\)             ....(1)

I = \(\rm \displaystyle\int_{0}^{\pi/2} \dfrac{\sqrt{\sin (\dfrac{\pi}{2}-x)}}{\sqrt{\sin (\dfrac{\pi}{2}-x)}+ \sqrt{\cos (\dfrac{\pi}{2}-x)}}dx\)

I = \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\cos x}}{\sqrt{\cos x}+ \sqrt{\sin x}}dx\)                           ....(2)

(1) और (2) जोड़कर हमारे पास है

2I = \(\rm \displaystyle\int_0^{\pi/2} \dfrac{\sqrt{\cos x}+ \sqrt{sinx}}{\sqrt{\cos x}+ \sqrt{\sin x}}dx\)

2I = \(\rm \displaystyle\int_0^{\pi/2}dx\)

2I = \(\rm[x]^\frac{\pi}{2}_0\)

I = \(\dfrac{\pi}{4}\)

Latest NIMCET Updates

Last updated on Jun 2, 2025

-> NIMCET 2025 admit card will be declared on June 3, 2025. Candidates can download the hall ticket till June 8, 2025.

-> NIMCET 2025 exam is scheduled for June 8, 2025. It will be conducted in Computer-Based Test (CBT) mode and will consist of 120 multiple-choice questions.

-> NIMCET 2025 results will be declared on June 27, 2025.

-> Check NIMCET 2025 previous year papers to know the exam pattern and improve your preparation.

More Definite Integrals Questions

More Integral Calculus Questions

Get Free Access Now
Hot Links: teen patti gold downloadable content teen patti lucky teen patti rich teen patti jodi teen patti stars