Quantitative Aptitude MCQ Quiz - Objective Question with Answer for Quantitative Aptitude - Download Free PDF
Last updated on Apr 20, 2025
Latest Quantitative Aptitude MCQ Objective Questions
Quantitative Aptitude Question 1:
അടുത്ത സംഖ്യ ഏത്?
125, 135, 120, 130, 115, 125
Answer (Detailed Solution Below)
Quantitative Aptitude Question 1 Detailed Solution
Solution:
Looking at the pattern of changes:
-
135 - 125 = 10
-
120 - 135 = -15
-
130 - 120 = 10
-
115 - 130 = -15
-
125 - 115 = 10
The pattern alternates between adding 10 and subtracting 15. Therefore, the next change should be -15.
So, the next number will be:
Answer: (A) 110
Quantitative Aptitude Question 2:
X = -, /= +, += / - = x ആയാൽ താഴെ തന്നിരിക്കുന്നവയിൽ ശരി ഏത്?
Answer (Detailed Solution Below)
Quantitative Aptitude Question 2 Detailed Solution
Solution:
We will solve each expression by replacing the operators according to the given rule.
-
Option (A):
-
Option (B):
-
Option (C):
-
Option (D):
So, the correct answer is (C).
Answer: (C) 15 - 5 / 5 * 20 + 16 = 6
Quantitative Aptitude Question 3:
ഒരു ദിവസത്തിൽ എത്ര തവണ ഒരു ക്ലോക്കിൻ്റെ മണിക്കൂർ സൂചിയും മിനിറ്റ് സൂചിയും നേർരേഖയിൽ വരും?
Answer (Detailed Solution Below)
Quantitative Aptitude Question 3 Detailed Solution
Solution:
The hour hand and minute hand are aligned 22 times a day. This happens because the two hands overlap every 12 hours, which gives us 11 overlaps in 12 hours, so 22 overlaps in a 24-hour period.
Answer: (C) 22
Quantitative Aptitude Question 4:
a, b, c യുടെ ശരാശരി m ആണ്. കൂടാതെ ab + bc + ca = 0 ആയാൽ a², b², c² യുടെ ശരാശരി എത്ര?
Answer (Detailed Solution Below)
Quantitative Aptitude Question 4 Detailed Solution
Solution:
Given that the average of , , and is , we have:
Also, given that , we can use the identity:
Substituting and :
Thus, the average of , , and is:
Answer: (B) 3m²
Quantitative Aptitude Question 5:
ഒറ്റയാൻ ഏത്?
56, 72, 90, 110, 132, 150
Answer (Detailed Solution Below)
Quantitative Aptitude Question 5 Detailed Solution
Solution: Looking at the pattern:
The difference between consecutive numbers is increasing by 2:
72 - 56 = 16
90 - 72 = 18
110 - 90 = 20
132 - 110 = 22
150 - 132 = 18 (which is different)
The odd number here is 150, which breaks the pattern. Hence, the missing number is 150.
Answer: (D) 150
Top Quantitative Aptitude MCQ Objective Questions
If x − \(\rm\frac{1}{x}\) = 3, the value of x3 − \(\rm\frac{1}{x^3}\) is
Answer (Detailed Solution Below)
Quantitative Aptitude Question 6 Detailed Solution
Download Solution PDFGiven:
x - 1/x = 3
Concept used:
a3 - b3 = (a - b)3 + 3ab(a - b)
Calculation:
x3 - 1/x3 = (x - 1/x)3 + 3 × x × 1/x × (x - 1/x)
⇒ (x - 1/x)3 + 3(x - 1/x)
⇒ (3)3 + 3 × (3)
⇒ 27 + 9 = 36
∴ The value of x3 - 1/x3 is 36.
Alternate Method If x - 1/x = a, then x3 - 1/x3 = a3 + 3a
Here a = 3
x - 1/x3 = 33 + 3 × 3
= 27 + 9
= 36
A shopkeeper earns a profit of 25 percent on selling a radio at 15 percent discount on the Printed price. Finds the ratio of the Printed price and the cost price of the radio.
Answer (Detailed Solution Below)
Quantitative Aptitude Question 7 Detailed Solution
Download Solution PDFGiven:
Profit = 25 Percent
Discount = 15 Percent
Formula:
MP/CP = (100 + Profit %)/(100 – Discount %)
MP = Printed Price
CP = Cost Price
Calculation:
We know that –
MP/CP = (100 + Profit %)/(100 – Discount %) ………. (1)
Put all given values in equation (1) then we gets
MP/CP = (100 + 25)/(100 – 15)
⇒ 125/85
⇒ 25/17
∴ The Ratio of the Printed price and cost price of radio will be 25 ∶ 17Six chords of equal lengths are drawn inside a semicircle of diameter 14√2 cm. Find the area of the shaded region?
Answer (Detailed Solution Below)
Quantitative Aptitude Question 8 Detailed Solution
Download Solution PDFGiven:
Diameter of semicircle = 14√2 cm
Radius = 14√2/2 = 7√2 cm
Total no. of chords = 6
Concept:
Since the chords are equal in length, they will subtend equal angles at the centre. Calculate the area of one sector and subtract the area of the isosceles triangle formed by a chord and radius, then multiply the result by 6 to get the desired result.
Formula used:
Area of sector = (θ/360°) × πr2
Area of triangle = 1/2 × a × b × Sin θ
Calculation:
The angle subtended by each chord = 180°/no. of chord
⇒ 180°/6
⇒ 30°
Area of sector AOB = (30°/360°) × (22/7) × 7√2 × 7√2
⇒ (1/12) × 22 × 7 × 2
⇒ (77/3) cm2
Area of triangle AOB = 1/2 × a × b × Sin θ
⇒ 1/2 × 7√2 × 7√2 × Sin 30°
⇒ 1/2 × 7√2 × 7√2 × 1/2
⇒ 49/2 cm2
∴ Area of shaded region = 6 × (Area of sector AOB - Area of triangle AOB)
⇒ 6 × [(77/3) – (49/2)]
⇒ 6 × [(154 – 147)/6]
⇒ 7 cm2
∴ Area of shaded region is 7 cm2
There is a rectangular garden of 220 metres × 70 metres. A path of width 4 metres is built around the garden. What is the area of the path?
Answer (Detailed Solution Below)
Quantitative Aptitude Question 9 Detailed Solution
Download Solution PDFFormula used
Area = length × breath
Calculation
The garden EFGH is shown in the figure. Where EF = 220 meters & EH = 70 meters.
The width of the path is 4 meters.
Now the area of the path leaving the four colored corners
= [2 × (220 × 4)] + [2 × (70 × 4)]
= (1760 + 560) square meter
= 2320 square meters
Now, the area of 4 square colored corners:
4 × (4 × 4)
{∵ Side of each square = 4 meter}
= 64 square meter
The total area of the path = the area of the path leaving the four colored corners + square colored corners
⇒ Total area of the path = 2320 + 64 = 2384 square meter
∴ Option 4 is the correct answer.
In an election between two candidates, the winning candidate got 70 percent votes of the valid votes and he won by a majority of 3630 votes. If out of total votes polled 75 percent votes are valid, then what is the total number of votes polled?
Answer (Detailed Solution Below)
Quantitative Aptitude Question 10 Detailed Solution
Download Solution PDFGiven:
Valid votes = 75% of total votes
Winning Candidate = 70% of Valid votes
He won by a majority of 3630 votes
Losing Candidate = 30% of Valid votes
Calculation:
Let 100x be the total number of votes polled
Valid votes = 75% of total votes
= 0.75 × 100x
= 75x
Majority of the Winning Candidate is 3630
Then, Difference between Winning and Losing Candidate = (70 % - 30 %) of valid votes
= 40% of the valid votes
Valid Votes = 75x
Then,
= 0.40 × 75x
= 30x
Hence, 30x is Majority of winning candidate
30x = 3630
x = 121
Total number of votes is 100x
= 100 × 121
= 12100
Answer is 12100.
Which of the following number is largest among all?
\(0.7,\;0.\bar 7,\;0.0\bar 7,0.\overline {07}\)
Answer (Detailed Solution Below)
Quantitative Aptitude Question 11 Detailed Solution
Download Solution PDFConcebt used
a.b̅ = a.bbbbbb
a.0b̅ = a.0bbbb
Calculation
0.7 = 0.700000 ̇....
\(0.\bar7 = 0.77777 \ldots\)
\(0.0\bar7 = 0.077777 \ldots\)
\(0.\overline {07} = 0.070707 \ldots\)
Now, 0.7777… or \(0.\bar7\) is largest among all.A train of length 400 m takes 15 seconds to cross a train of length 300 m traveling at 60 km per hour from the opposite direction along a parallel track. What is the speed of the longer train, in km per hour?
Answer (Detailed Solution Below)
Quantitative Aptitude Question 12 Detailed Solution
Download Solution PDFGiven
Length of first train (L1) = 400 m
Length of second train (L2) = 300 m
Speed of second train (S2) = 60 km/hr
Time taken to cross each other (T) = 15 s
Concept:
Relative speed when two objects move in opposite directions is the sum of their speeds.
Calculations:
Let the speed of the first train = x km/hr
Total length = 300 + 400
Time = 15 sec
According to the question:
700/15 = (60 + x) × 5/18
28 × 6 = 60 + x
x = 108 km/hr.
Therefore, the speed of the longer train is 108 km per hour.
u : v = 4 : 7 and v : w = 9 : 7. If u = 72, then what is the value of w?
Answer (Detailed Solution Below)
Quantitative Aptitude Question 13 Detailed Solution
Download Solution PDFGiven:
u : v = 4 : 7 and v : w = 9 : 7
Concept Used: In this type of question, number can be calculated by using the below formulae
Calculation:
u : v = 4 : 7 and v : w = 9 : 7
To make ratio v equal in both cases
We have to multiply the 1st ratio by 9 and 2nd ratio by 7
u : v = 9 × 4 : 9 × 7 = 36 : 63 ----(i)
v : w = 9 × 7 : 7 × 7 = 63 : 49 ----(ii)
Form (i) and (ii), we can see that the ratio v is equal in both cases
So, Equating the ratios we get,
u ∶ v ∶ w = 36 ∶ 63 ∶ 49
⇒ u ∶ w = 36 ∶ 49
When u = 72,
⇒ w = 49 × 72/36 = 98
∴ Value of w is 98
If the price of petrol has increased from Rs. 40 per litre to Rs. 60 per litre, by how much percent a person has to decrease his consumption so that his expenditure remains same.
Answer (Detailed Solution Below)
Quantitative Aptitude Question 14 Detailed Solution
Download Solution PDFGIVEN :
If the price of petrol has increased from Rs. 40 per litre to Rs. 60 per litre
CALCULATION :
Let the consumption be 100 litres.
When price is Rs. 40 per litres, then, the expenditure = 100 × 40
⇒ Rs. 4,000.
At Rs. 60 per litre, the 60 × consumption = 4000
Consumption = 4,000/60 = 66.67 litres.
∴ Required decreased % = 100 - 66.67 = 33.33%
What is the value of \(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}?\)
Answer (Detailed Solution Below)
Quantitative Aptitude Question 15 Detailed Solution
Download Solution PDFSolution:
\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\)
= 25/2 + 37/3 + 73/6
= (75 + 74 + 73)/6
= 222/6
= 37
Shortcut Trick
\(12\frac{1}{2} + 12\frac{1}{3} + 12\frac{1}{6}\)
= 12 + 12 + 12 + (1/2 + 1/3 + 1/6)
= 36 + 1 = 37